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Indistinguishability of particles is a crucial factor destabilizing crystalline order in Bose systems.
We describe this effect in terms of damped quasi-particle modes and in the dual language of Feyn-
man paths, and illustrate it by first-principle simulations of dipolar bosons and bulk condensed
4He. The first major implication is that, contrary to conventional wisdom, zero-point motion alone
cannot prevent 4He crystallization at near zero pressure. Secondly, Bose statistics leads to quantum
jamming at finite temperature, dramatically enhancing the metastability of superfluid glasses. Only
studies of indistinguishable particles can reliably address these issues.
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Among naturally occurring condensed matter systems,
helium is the only known substance that escapes crystal-
lization at low temperature (T ), remaining a liquid all the
way down to T = 0 under the pressure of its own vapor.
The standard argument to explain the failure of liquid
helium to form a crystal at low temperature is based on
its low atomic mass, and consequently large zero-point
motion, and the weakness of the interatomic potential
[1].

Superficially, this contention appears plausible; indeed,
in the crystal phase of helium (stable at moderate pres-
sure) the ratio between the zero-point atomic displace-
ment u0 and the interatomic distance a, an analog of
Lindemann ratio [2] at zero temperature, is almost four
times greater than in all other known solids. The stan-
dard argument makes no reference at all to Bose statis-
tics, and in fact the assumption is usually made that
quantitatively accurate theoretical predictions of liquid-
solid phase boundaries for Bose systems can be obtained
by neglecting quantum statistics altogether, i.e., regard-
ing particles as distinguishable.

Several reasons can be put forward to justify this
approximation, which simplifies some calculations, e.g.,
those based on Quantum Monte Carlo simulations [3].
For one thing, solid helium features many of the prop-
erties that are typical of other, less quantal solids, most
notably an exponentially small energy scale (nearly five
orders of magnitude smaller than vibration energies) for
tunneling exchange of two (and more) atoms [4, 5]. In
other words, even in solid helium atoms are fairly local-
ized at their equilibrium (lattice) positions. Quantita-
tively, the energy of a crystal of 4He atoms is very nearly
identical to that of a crystal made of distinguishable par-
ticles (henceforth referred to as boltzmannons) with the
same mass and interatomic potential of 4He atoms [6].
Thermal melting of solids occurs when fluctuations
around equilibrium points, characterized by the r.m.s.
excursion uT , reach a certain fraction of the interatomic

distance a, that is when the Lindemann ratio uT /a is
large enough (for most materials, this means above ∼
0.1). This effect has little to do with quantum statistics,
and occurs in the same way in a system of boltzman-
nons.
Finally, as was first noted by Feynman, there is abso-
lutely no difference between the ground state wave func-
tion of an assembly of bosons, and one of correponding
distinguishable particles. For, the bosonic ground state
wave function is nodeless, and boltzmannons are allowed
to be in the same state by the symmetry of the Hamilto-
nian with respect to particle label [7].

In this Article, we argue that any attempt to determine
the phase diagram of a Bose system neglecting quantum
statistics is fundamentally flawed, prone to both large
quantitative and qualitative errors. Specifically, we show
that, unlike their Bose counterpart, distinguishable parti-
cle systems undergo thermo-crystallization above a liquid
ground state, in a wide region of the phase diagram, as a
result of a mechanism akin to that of the Pomeranchuk
effect in 3He. We establish this conclusion through nu-
merical simulations, of which we show results for two
representative Bose systems, namely a two-dimensional
assembly of dipoles interacting purely repulsively, and
three-dimensional condensed 4He. We furnish strong evi-
dence that, contrary to a widely held belief, over a broad
range of parameters the destabilization of a crystalline
phase is triggered by effects related to Bose statistics,
i.e., exchanges of indistinguishable particles, not by the
conceptually distinct zero-point motion alone. In partic-
ular, we predict that 4He would not escape crystallization
at low pressure and finite temperature, were 4He atoms
truly “distinguishable”.

We provide a simple theoretical framework for thermo-
crystallization, making use of two alternative, comple-
mentary descriptions; the first is based on free energy
considerations for a system of damped quasi-particles,
the second is formulated in the dual language of Feyn-
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man paths in imaginary time (i.e., world lines).
A far-reaching implication of the importance of quantum
exchanges, is the existence of a superfluid glass (super-
glass) metastable phase, with long lifetime set by the en-
tanglement of particle world lines involved in macroscopic
exchange cycles. Quantum jamming can take place in a
Bose system, due to resilient entanglement of indistin-
guishable particles, an effect that is entirely missed in
studies of boltzmannons. In a Feynman path-integral pic-
ture, one can think of entangled world lines that cannot
be easily disentangled through a series of single-particle
displacements.

We begin by showing two examples of thermo-
crystallization of boltzmannons, observed in computer
simulations over a broad range of thermodynamic pa-
rameters. Specifically, we describe simulation results for
two representative Bose systems with purely repulsive
and Lennard-Jones type interaction potentials. First,
we consider a two-dimensional assembly of bosons inter-
acting via a pairwise, purely repulsive dipolar potential
v(r) = D/r3, where D is a constant. Such a many-body
system can be realized in the laboratory by means of cold
polar molecules [8], and its ground state phase diagram
has been the subject of several theoretical studies [9, 10].
The Hamiltonian of the system in reduced units is

Ĥ = −1

2

N∑
i=1

∇2
i +

∑
i>j

1

r3ij
, (1)

where rij is the distance between particles i and j. The
unit of length is r◦ ≡ mD (here and below h̄=kB=1),
while ε◦ ≡ D/r3◦ ≡ 1/mr2◦ is the energy unit. The rel-
evant thermodynamic parameter, besides the tempera-
ture, is the density ρ = 1/a2. The system is enclosed in
a cell with periodic boundary conditions and simulated
with the worm algorithm in the path-integral represen-
tation [11, 12].

Figure 1 shows simulation snapshots of equilibrium
particle worldlines, projected onto the xy plane, for a
system of N=144 particles, at T=200 ε◦ and a = 0.067.
Although the simulation for boltzmannons is started with
particles at random positions inside a square cell, the sys-
tem spontaneously forms an ordered, triangular arrange-
ment, clearly identifiable in the left panel of Fig. 1. Fuzzy
“clouds” provide a rough measure of quantum delocaliza-
tion arising from zero-point motion which is significant in
this solid, as quantitatively expressed by the large value
(∼ 0.37) of the Lindemann ratio, far above the conven-
tional threshold for (thermal) melting, and close to that
of the bcc 3He [13]. We have observed crystallization of
boltzmannons down to a temperature T = 50 ε◦.

The physical situation is qualitatively different if Bose
statistics is taken fully into account, as shown in the right
panel of Fig. 1. In this case, although the system is ini-
tially prepared on a regular triangular lattice (hence the
rectangular simulation cell), particle world lines entan-

FIG. 1. Snapshots of particle worldlines, projected onto the
xy plane, for a two-dimensional system of dipolar bosons, at
temperature T = 200 ε◦ and interparticle distance a = 0.067
(see text). The size of each fuzzy ‘cloud’ is a rough measure
of quantum delocalization associated with zero-point motion.
Left panel shows an equilibrium configuration of boltzman-
nons, right panel shows one of bosons, in which worldlines
entangle. Simulation cell geometries and initial particle ar-
rangements were purposefully chosen to favor the competing
(i.e., non-equilibrium) phase.

gle, and the crystalline order is destabilized in favor of a
disordered, superfluid phase, with a value of the super-
fluid fraction close to unity [14].

We have observed the same behavior in a simulation
of three-dimensional condensed 4He, at a density ρ =
0.0248 Å−3 and temperature T=0.5 K (we made use of
the accurate Aziz pair potential [15]). The equilibrium
thermodynamic phase in this case is a superfluid, and
that is what we observe in a simulation of 108 indistin-
guishable 4He atoms, i.e., the system quickly melts, if
particles are initially arranged in a regular hcp crystal.
However, in simulations in which exchanges cycles of par-
ticles are inhibited, the system forms a hcp crystal, albeit
with large atomic zero-point oscillations around lattice
sites, even when atoms are initially placed at random po-
sitions. The difference in energy between the crystalline
phase of distinguishable helium atoms, and the actual su-
perfluid phase of 4He, is of the order of 0.5 K; exchanges
contribute to lowering the atomic kinetic energy by ap-
proximately 1 K, offsetting the potential energy increase
due to the loss of crystalline order.

In order to develop some appreciation for the im-
portance of thermo-crystallization, and how one cannot
“sweep it under the rug”, it is worth mentioning that
ρ = 0.0248 Å−3 in the hcp solid is very close to zero
pressure, as we verified by direct calculation (see also
Ref. [16]). Thus, it is because of Bose statistics that
the equilibrium thermodynamic phase of condensed he-
lium at T=0.5 K is a superfluid, rather than a crystal.
By contrast, boltzmannons are capable of forming a solid
phase at densities (and pressures) where vacancy and in-
terstitial gaps are found to close, near zero pressure. Our
discussion is consistent with recent studies of boltzman-
nons with Coulomb interactions [3], which observe the
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effect of thermo-crystallization, with a slope linear in T
for the transition line between the liquid and the solid in
the phase diagram.

In order to arrive at a semi-quantitative theory of the
thermo-crystallization phenomenon, we note that dom-
inant excitations in a system of Boltzmannons at low
temperature are radically different from sound waves in
bosonic liquids and solids. If one considers a single parti-
cle as distinguishable from all others (e.g., as in Feyn-
man’s original study of a single 3He impurity in su-
perfluid 4He [17]), one may assume an impuriton exci-
tation characterized by a parabolic dispersion relation
εk = k2/2m∗, with effective mass m∗ = m∗

L,S for liquid
and solid phases, respectively. Impuriton type excita-
tions with the same εk remain well-defined in a system
of boltzmannons, because their ground state is homoge-
neous due to particle delocalization over the entire system
volume. At finite temperature, delocalization of particle
labels over the de Broglie wavelength λT =

√
2π/m∗T

guarantees that unmodified impuriton excitations exist
at energies ε� T ; their inverse life-time τ−1 ∼

√
Tε can

be estimated from the condition of traveling a distance
λT . For thermodynamic applications, however, damping
rates comparable to the typical quasi-particle energy do
not change scaling of energy and free energy with temper-
ature, and thus semi-quantitative results can be obtained
by considering a gas of N distinguishable quasi-particles
with dispersion relation εk.

This picture applies to both liquid and crystal, but for
the latter one should take into account that εk is a tight-
binding dispersion relation, with an exponentially small
bandwidth W , set by tunneling exchange of particles.
Thus, at T � W we are dealing with an effective mass
m∗

S ∼ 2d/Wa2, orders of magnitude larger than m∗
L (in

helium, m∗
S/m

∗
L ∼ 104). At T > W , the thermal part

of free energy of boltzmannons (and any other multi-
component system) is in leading order purely entropic:
∆FS = F (T )− F (0) ≈ −TS, where S = ln(N !) (in gen-
eral, eS is the number of distinguishable permutations in
the N -particle system). When bosons are replaced with
boltzmannons, both the crystal and the liquid acquire
negative contributions to their free energies, but ∆FS is
larger in magnitude than ∆FL. This enables a transition
to a solid phase at finite temperature, even if the ground
state is liquid. The effect of thermo-crystallization dis-
cussed here is similar to the liquid-solid transition in 3He,
which is driven by fast spin entropy increase (up to ln 2
per particle) in the crystalline phase.

Quantitatively, using standard expressions for the ideal
gas,

FL − FS ∼ ∆E(0) +
d

2
NT ln

m∗
S

m∗
L

(T �W ) , (2)

FL − FS ∼ ∆E(0) +
d

2
NT ln

Tdeg
T

(W � T � Tdeg),

(3)
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FIG. 2. Schematic liquid-solid phase diagram for Lennard-
Jones type Bose systems. Solid lines separate the normal
fluid (NF), superfluid (SF) and crystalline (C) phases. The
dashed line shows the position of the crystal-liquid boundary
if quantum exchanges are neglected. In case of 4He mass
and potential, distinguishable particles predict a solid phase
around T = 0.5 K. Phases at P < 0 are metastable as vapor
(excluded here for clarity) is the equilibrium state at finite
temperature and zero pressure. Note that in the T → 0 limit
the descriptions in terms of distinguishable and Bose particles
become equivalent [7].

where d is the dimensionality, ∆E(0) = EL(0) − ES(0)
is the energy difference in the ground state and Tdeg ∼
2πn2/d/m∗

L is an estimate of the liquid degeneracy tem-
perature. Note the finite slope of the liquid-solid interface
at low temperature, Tc ∝ (−∆E(0)/N)/ ln(m∗

S/m
∗
L),

and the fact that this slope can be quite small due to ex-
ponentially large effective mass ratio. At T > Tdeg both
phases fully realize their ln(N !) entropies and effects of
quantum statistics become unimportant. The resulting
phase diagram is illustrated in Fig. 2. The reentrant be-
havior will take place in any system of distinguishable
particles close to the liquid-solid quantum critical point.
The dashed curve may or not extend to regions of neg-
ative pressure. In order not to overload the discussion
we focus on the liquid-solid transition, i.e., we exclude
vapor, and gloss over possible hexatic (in 2D) and super-
solid phases which may exist for certain systems.

In the path-integral language, the difference between
bosons and boltzmannons is exclusively in the nature
of periodic boundary conditions in imaginary time τ ∈
(0, 1/T ), in that world lines for distinguishable parti-
cles are not allowed to form exchange cycles. Feynman’s
theorem for the ground state is understood as strongly
fluctuating paths, such that looking at any imaginary
time scale one is unable to determine whether the world-
lines would eventually form exchange cycles or not: at
τ � 1/T the system can well be mapped to a system
with open boundary conditions in imaginary time. From
this picture, we deduce that propagation of the impuri-
ton worldline in imaginary time τ � 1/T , described by
the Matsubara Green’s function, is the same in bosonic
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FIG. 3. An illustration of the nucleation process leading to
large crystalline seeds. Compared to their bosonic counter-
part (upper part), the distinguishable particles (lower part)
have a lower free-energy nucleation barrier due to the large
negative free energy shift of the crystalline phase.

and boltzmannon systems, in agreement with the pre-
vious conclusion. Interestingly, thermo-crystallization is
now linked to the increased “bending” energy (action, to
be more precise) for highly entangled worldlines to sat-
isfy boundary conditions. Whereas bosonic worldlines
reconnect on each other and form large (macroscopic)
exchange cycles, the distinguishable lines have to return
to their original positions. This puts liquid worldline
configurations of boltzmannons at a disadvantage with
respect to their bosonic counterpart. In the vicinity of
the superfluid-solid transition, long exchanges of indis-
tinguishable particles (comprising a finite fraction of all
particles in the system) play a crucial role in stabiliz-
ing the equilibrium superfluid phase. Hence, neglecting
quantum exchanges results in an incorrect characteriza-
tion of the physics of the system.

Long exchange cycles are also crucial for determining
the lifetime and metastability of superglasses. A plausi-
ble order-of-magnitude estimate of the lifetime of a su-
perglass phase of 4He, places it at least in the millisecond
range [18], which should allow for its experimental obser-
vation. Classical jamming is understood as a physical
process wherein the system enters a structurally disor-
dered state, with severely restricted motion of individual
particles, which cannot easily rearrange into a more en-
ergetically favorable configuration. In its extreme form,
it leads to the formation of classical glasses. An intuitive
characterization of the superglass phase consists of quan-
tum jamming of highly entangled particle world lines. On
the one hand, this state has frozen structural disorder on
a microscopic scale, on the other hand it can support
dissipation-less flow of its own particles, if macroscopic
exchanges extend throughout the whole system. In order
for the system to find its equilibrium lower-energy or-
dered (and insulating) configurations, world lines have
to disentangle from macroscopic exchange cycles, and

this can be expected to involve rare multi-particle ex-
changes, i.e. the nucleation of the crystal phase proceeds
through the multi-particle seed. At finite temperature, it
is reasonable to expect that the leading channel should be
thermal (rather than quantum) nucleation. In this case,
illustrated in Fig. 3, the free energy barrier is higher for
indistinguishable particles, rendering the probability of
nucleation dramatically lower compared to that of boltz-
mannons. Thus, effects of Bose statistics are instrumen-
tal in conferring enhanced stability to both liquids and
superglasses. Studies of boltzmannons at finite tempera-
ture miss the quantum jamming effect of long exchange
cycles, and can not therefore be used to address existence
and stability of superglasses [19].

In conclusion, we showed that indistinguishability of
particles has profound effects on the phase diagram of
Bose systems, 4He being the most obvious case. The in-
clusion of exchanges of indistinguishable particles in the
formalism is crucial, in order to obtain correct phase tran-
sition lines, zero-point motion alone being insufficient
at finite temperaturegoo, contrary to a claim routinely
made even in textbooks [1]. For superglass phases, parti-
cle entanglement caused by long exchange cycles greatly
enhances its lifetime against crystallization, an effect that
cannot be captured by studies in which Bose statistics is
neglected.
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