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We study the stability of Bose condensates with Rashba-Dresselhaus spin-orbit coupling in three
dimensions against quantum and thermal fluctuations. The ground state depletion of the plane-
wave condensate due to quantum fluctuations is, as we show, finite, and therefore the condensate is
stable. We also calculate the corresponding shift of the ground state energy. Although the system
cannot condense in the absence of interparticle interactions, we show by estimating the number of
excited particles that interactions stabilize the condensate even at non-zero temperature. Unlike in
the usual Bose gas, the normal phase is not kinematically forbidden at any temperature; calculating
the free energy of the normal phase at finite temperature, and comparing with the free energy of the
condensed state, we infer that generally the system is condensed at zero temperature, and undergoes
a transition to normal at non-zero temperature.

PACS numbers:

Creation of artificial gauge fields in ultracold atoms
presents opportunities to study physical phenomena pre-
viously unattainable in atomic or condensed matter sys-
tems [1]. Of current interest is the non-Abelian Rashba-
Dresselhaus spin-orbit coupling [2, 3] which, following
several proposals [4–7], has recently been realized exper-
imentally [8, 9]. Depending on the details of the Rashba-
Dresselhaus coupling and interparticle interactions, one
of two possible ground state phases is expected: a plane-
wave state, in which the system condenses into a single
momentum state, and a striped phase, where the conden-
sate is a linear superposition of two states with opposite
momenta [10, 11, reviewed in 12]; renormalization of the
interparticle interaction beyond mean-field [13, 14] has
significant effects on the phase diagram [13, 15].
Condensates of ultracold bosons in three dimensions

with Rashba spin-orbit coupling differ from usual Bose-
Einstein condensates (BEC’s) in several important ways.
In the absence of interparticle interactions, the low-lying
density of states is two-dimensional [16], and thus con-
densation is destroyed by thermal fluctuations at any
non-zero temperature. With interparticle interactions
present, fluctuations around mean-field states lead at
finite temperature to an instability of the plane-wave
state in two dimensions [17]. In this paper, we fo-
cus on three-dimensional ultracold bosons with isotropic
Rashba-Dresselhaus coupling in the x-y plane, to investi-
gate the effects of quantum and thermal fluctuations on
a plane-wave Bose-Einstein condensation, and show that
interactions in fact stabilize the condensate in 3D. This
interaction-induced BEC is a unique feature of bosons
with Rashba-Dresselhaus spin-orbit coupling, with no
analogous system yet found. However, unlike in usual
BEC’s, a non-condensed state is not, as we show, kine-
matically forbidden at any non-zero temperature. Con-
densation, while favored at very low temperature, should
disappear at high temperature. As in a BCS supercon-

ductor, where both a normal and condensed state are
allowed at low temperature, the system should undergo
a similar phase transition at a critical temperature.
We consider bosons with an isotropic Rashba-

Dresselhaus spin-orbit coupling in three dimensions with
an isotropic interaction, described by the Hamiltonian
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As previously [14, 15], m is the atomic mass, V is the
volume of the system, and κ is the spin-orbit coupling
strength, taken to be positive. The isotropic s-wave cou-
pling is g. The operators ap and bp annihilate atoms
with momentum p in the pseudospin states a and b, re-
spectively. The σx and σy are the usual Pauli matrices
between the internal states, and I is the two-by-two iden-
tity matrix. The dispersion relation of the single parti-
cle terms in the Hamitonian has two branches ǫ±(p) =

{(p⊥ ± κ)2 + p2z}/2m, where p⊥ ≡
√

p2x + p2y, with cir-

cularly degenerate ground states along (p⊥, pz) = (κ, 0).
In this paper, we assume that g is the (constant) mean-
field coupling; extension beyond mean-field coupling, as
in [13–15], is left as a future problem. Starting from the
plane-wave ground state with momentum κ ≡ (κ, 0, 0),
we construct the single-partice Green’s functions, includ-
ing quantum fluctuations via the Bogoliubov approxima-
tion, and derive the low-momentum spectra, estimate the
condensate depletion, and calculate the ground state en-
ergy as a function of the spin-orbit coupling strength. As
we show, the number of excited particles increases and
the ground state energy decreases with increasing spin-
orbit coupling strength.
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Since the operator (a†
κ
− b†

κ
)/
√
2 creates a particle in

the single-particle ground state with momentum κ, it is
easier to work in the following (−,+) basis:

(

ψ−,p

ψ+,p

)

≡ 1√
2

(

1 −1
1 1

)(

ap
bp

)

. (2)

The state created by ψ†
−,κ is macroscopically occupied.

We first derive the fluctuations of the system in terms
of the single particle matrix Green’s functions with
anomalous components,

G(q, t1 − t2) ≡ −i〈T
(

Ψq(t1)Ψ
†
q
(t2)

)

〉, (3)

where the four-component spinor Ψq(t) is

Ψq(t) ≡
(

ψ−,κ+q(t), ψ
†
−,κ−q

(t),

ψ+,κ+q(t), ψ
†
+,κ−q

(t)
)

. (4)

From the equations of motion for the Green’s functions
with Hamiltioninan H − µN , in the Bogliubov approxi-
mation, where the operators ψ†

−,κ and ψ−,κ are replaced

by
√
N0 with N0 the number of condensate particles, and

with the Hartree-Fock energy included, we obtain

G−1(q, z) =









z −A −gn0 i κmqy 0
−gn0 −z −A 0 i κmqy
−i κmqy 0 z −B 0

0 −i κmqy 0 −z −D









, (5)

where G(q.z) is the Fourier transform of G(q, t) and

A(q) ≡ q2/2m− µ+ g(2n0 + 2n− + n+)

B(q) ≡ (2κ+ q)2/2m− µ+ g(n0 + n− + 2n+)

D(q) ≡ B(−q). (6)

The chemical potential in leading order is µ0 =
∂〈H〉/∂N0 = gn0 + 2gn− + gn+, where n0 = N0/V , and

n∓ =
1

V

∑

p 6=κ

〈ψ†
∓,pψ∓,p〉 (7)

are the number of particles in the (−) and (+) states that
are not in the condensate. In lowest order,

A(q) = q2/2m+ gn0, B(q) = (2κ+ q)2/2m. (8)

Low-momentum excitations: The excitation spectra is
given by the poles of G(q.z) with µ = µ0; the poles
satisfy

0 = detG−1(q, z) = (gn0)
2(z −B)(z +D)+

[

(z −A)(z −B)− κ2

m2 q
2
y

] [

(z +A)(z +D)− κ2

m2 q
2
y

]

.

(9)

Since detG−1(q, z) = detG−1(−q,−z), the roots come
in pairs: two positive and two negative, corresponding to
two excitations, for each q,
One of the two excitations is gapless in the limit q → 0,

and the other is gapless in the limit q → −2κ. Although
the roots of detG−1(q, z) = 0 cannot be found analyti-
cally for general q, we can construct the low energy dis-
persion relations for momenta around the gapless points,
|q| ≪ κ and |q + 2κ| ≪ κ. With strong spin-orbit cou-
pling, κ2/m ≫ g|n+ − n−| ≡ g|∆n|, the spectrum to
leading order in the low momentum limit |q| ≪ κ is

ǫ1(q) ≈
√

2gn0

[

q2x + q2z
2m

+
q2y
4κ2

(

g∆n+
q2y
2m

)]1/2

(10)

The dispersion relation for qy = 0 is linear at low mo-
menta, as in the usual Bogoliubov spectrum [18]. Since
q2y/2m is generally larger than g|∆n| in typical experi-
mental setups, the dispersion is essentially quadratic for
qx = qz = 0 [26]. On the other hand, the gapless spec-
trum in the limit of small q′ ≡ q+ 2κ is

ǫ2(q
′) =

q′2x + q′2z
2m

+
gn0

κ2/m+ gn0

q′2y
4m

. (11)

This excitation is quadratic and free-particle like. The
spectra of the two excitations agree with the result of
[19].
Condensate depletion: The densities n± are given in

terms of the Green’s functions by

n− = i

∫

dzd3q

(2π)4
G11(q, z)

n+ = i

∫

dzd3q

(2π)4
G33(q, z), (12)

where the contour in the z integration surrounds the
negative poles in the positive sense. To a first approxi-
mation we neglect n∓ inside G(q, z) . We assume that
√

(2mg)3n0 is small, and in the end we see that ∆n/n0

is small, justifying ignoring n± in the integration.
Before evaluating the integrals in (12), we show that

they converge in the ultraviolet. Explicitly,

n− =i

∫

dzd3q

(2π)4
(z −B)

detG−1

[

(z +A)(z +D)− κ2q2y
m2

]

.

(13)

The poles in z at large q behave as −q2/2m, and since
at large q, A ∼ B ∼ D ∼ q2/2m naive power counting
would indicate that the integrand after the z integration
behaves as q−1, which combined with three q-integrals
yields a quadratic ultraviolet divergence. In fact, cancel-
lations in the integrand lead to convergence. In evaluat-
ing the z integral in terms of the poles of the integrand,
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we employ the relation derived from detG−1(q, z) = 0
at the poles,

(z +A)(z +D)− κ2

m2
q2y = − (gn0)

2(z −B)(z +D)

(z −A)(z −B)− κ2

m2 q2y

(14)

to replace the left side of (14) in the numerator of (13)
with the term on the right side. Then

n− = −i
∫

dzd3q

(2π)4
(gn0)

2

detG−1

(z −B)2(z +D)

(z −A)(z −B)− κ2

m2 q2y
.

(15)

In this form the integrand behaves explicitly as q−4 af-
ter the z-integral, and is thus ultraviolet convergent; the
integral for n+ is similarly convergent.
The depletions n∓ can be evaluated numerically as a

function of κ/
√
2mgn0. The number of excited parti-

cles nex = n− + n+ is plotted in Fig. 1. Generally,
n− ≫ n+, and the contribution of n+ to the number of
excited particles is negligible. As the figure shows, the
condensate depletion increases with κ/

√
2mgn0, and is

of order n0

√

(2mg)3n0 ≪ n, thus justifying our use of
the Bogoliubov approximation.
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FIG. 1: The number of excited particles, in units of
(2mgn0)

3/2 as a function of the spin-orbit coupling strength
κ in units of

√
2mgn0. Generally n

−
≫ n+ and nex ≈ n

−
.

Ground state energy: The ground state energy density,
E, in terms of the Green’s function is [20]

E = µn/2

+
i

2

∫

dzd3q

(2π)4
Tr

[{(

z +
(κ + q)2 + κ2

2m

)

I+

κ

m
(−(κ+ qx)σz + qyσy)

}

(

G11(q, z) G13(q, z)
G31(q, z) G33(q, z)

)]

,

(16)

where the term in braces is z plus the single-particle
Hamiltonian in the (−,+) basis. The integral equals

gn0(2mgn0)
3/2 times a dimensionless function X of

µ/gn0 and κ/
√
2mgn0. Since the chemical potential in

mean-field is µ = gn0 and nex is O((2mgn0)
3/2), the en-

ergy density is µn/2+Xgn(2mgn)3/2. Then, writing the
chemical potential similarly as µ = gn(1+Y

√

(2mg)3n),
and using µ = ∂E/∂n, one finds Y = −10X ; thus the
ground state energy is

E ≈ gn2

2

(

1− 8X
√

(2mg)3n
)

. (17)

In calculating X , we take µ = gn0; deviations of µ from
gn0 result in higher order corrections. For κ → 0, one
finds X = −1/15

√
2π2, which leads to the ground state

energy derived by Lee and Yang [21, 22]. For general κ,
we calculate X numerically.
Figure 2 shows the shift in the ground state energy,

∆E ≡ E − gn2/2, in units of (
√

(2mg)3n)gn2/2, as a
function of κ/

√
2mgn0. The energy decreases with in-

creasing κ, and ∆E changes from positive to negative at
κ ∼ 0.6

√
2mgn0, an effect too small to see in the figure.
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FIG. 2: The shift in the ground state energy density, ∆E,
in units of (

√

(2mg)3n)gn2/2, as a function of the spin-orbit
coupling strength κ in units of

√
2mgn0.

BEC at finite temperature: In the absence of interpar-
ticle interactions, bosons with an isotropic Rashba spin-
orbit coupling do not condense at non-zero temperature
because the density of states becomes two-dimensional
(mκ/2π) at low energy [16]. However, in the presence of
interactions it is possible for the system to Bose condense
at finite temperature, as we now discuss.
The number of excited particles at temperature T is

nex = −T
∑

ν

∫

d3q

(2π)3
(G11(q, zν) +G33(q, zν)) , (18)

where the ν sum is over bosonic Matsubara frequencies.
The system forms a BEC at a given temperature when
nex converges in the infrared, and the total particle den-
sity exceeds nex. The infrared structure is captured by
the zν = 0 component of the Matsubara sum. Since there
are two gapless excitations ǫ1(q) and ǫ2(q

′), we need to
add infrared contributions from two limits q → 0 and
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q′ → 0. In the limit of small q and q′, one finds from
inverting Eq. (5),

G11(q, 0) +G33(q, 0) = − gn0

ǫ1(q)2
,

G11(q
′, 0) +G33(q

′, 0) = − 1

ǫ2(q′)
, (19)

respectively, and thus

nex(µ0) ∼ T

∫

d3q

(2π)3

(

gn0

ǫ1(q)2
+

1

ǫ2(q)
+ C

)

, (20)

where C is a constant as q → 0. The integral converges
in the infrared, and thus a BEC can form at finite tem-
perature.
This result is consistent with Jian and Zhai’s effec-

tive field theory approach to calculate phase fluctuations
[17], applied in three dimensions, through the direct re-
lation between the condensate depletion and the phase
fluctuations[23]:

n0 ∼ n e−〈(φ(r)−φ(r′))2〉/2, |r − r′| → ∞. (21)

Normal state: So far, we have assumed the existence
of condensate, and proved that the condensate is not
destroyed by thermal fluctuations. We should also ask
whether a non-condensed state is favorable at finite tem-
perature. Here we obtain the free energy of the normal
state within the Hartree-Fock approximation and com-
pare the free energies with and without a condensate.
The reduced Hamiltonian within the Hartree-Fock ap-

proximation with no condensate is

HHF = −V g
(

n2
− + n2

+ + n−n+

)

+
∑

p

(

ψ†
−,p ψ†

+,p

)

(

A −i κmpy
i κmpy B

)(

ψ−,p

ψ+,p

)

, (22)

where A and B are as in (6) with n0 = 0. In fact,
n− = n+ = n/2, where n is the total number density of
particles; namely there is no spontaneous imbalance of
population in each pseudospin species, as one can prove
by introducing independent chemical potentials for each
species, and seeing, as in Appendix B of [24], that the sec-
ond derivative of the Ginzburg-Landau free energy with
respect to the population imbalance is positive.
With n± = n/2, the Helmholtz free energy density is

F = µn− 3

4
gn2 +

1

βV

∑

p

{

ln
(

1− e−βξ−(p)
)

+ ln
(

1− e−βξ+(p)
)}

, (23)

where ξ±(p) ≡ {(p⊥ ± κ)2 + p2z}/(2m) − µ + 3gn/2;
the chemical potential is determined by the number
equation n = (1/V )

∑

p
{f(ξ−(p)) + f(ξ+(p))}, where

f(x) ≡ 1/(eβx − 1). Unlike for free bosons in three di-
mensions, it is possible at any temperature to find a value

of µ which satisfies the number equation, thus the state
without condensate is not kinematically forbidden at any
non-zero temperature.
As T → 0 in the absence of a condensate, µ →

3gn/2, and F → 3gn2/4. This energy is larger than
the ground state energy with condensate, (gn2/2)(1 +
O(
√

(2mg)3n)). Therefore, at sufficiently low temper-
ature, a condensate is energetically preferred. At low
temperature F (µ, n0) < F (µ, 0), so n0 > 0. The conden-
sate density decreases with temperature, and the tran-
sition to the normal state, if second order, occurs when
∂F (µ, n0)/∂n0 = 0 at n0 = 0. Determination of the
order of the transition, the transition temperature, and
possible critical exponents at the transition is in progress
[27].
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