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Abstract 

 

A nonlinear oscillation of frequency and amplitude has been found by massively 

parallel gyrokinetic simulations of Alfven eigenmodes excited by energetic 

particles in toroidal plasmas. The fast and repetitive frequency chirping is induced 

by the evolution of coherent structures in the phase space. The dynamics of the 

coherent structures is controlled by the competition between the phase space 

island formation due to the nonlinear particle trapping and the island destruction 

due to the free streaming. The chirping dynamics provides a conceptual 

framework for understanding nonlinear wave-particle interactions underlying the 

transport process in collisionless plasmas. 
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 Energetic particles produced by fusion reactions and auxiliary heating can excite various 

Alfven eigenmodes in fusion experiments such as ITER1. Associated nonlinear wave-particle 

interactions can generate significantly enhanced levels of energetic particle transport that would 

degrade overall plasma confinement and damage fusion devices. Increased energetic particle 

transport by Alfven eigenmodes has been correlated2 with a fast frequency oscillation (chirping) 

with a sub-millisecond period that has been observed in many experiments2-6. In previous studies, 

an analytic model for the chirping7,8 based on the one-dimensional (1D) nonlinear wave-particle 

interaction near marginal stability has been constructed, and a single burst of chirping has been 

observed in hybrid magnetohydrodynamic simulations with sources and sinks9. Here we report 

the first dynamic observation of fast and repetitive frequency chirping by massively parallel, 

first-principles kinetic simulations without sources and sinks in a realistic toroidal geometry. The 

chirping dynamics provides a conceptual framework for understanding the nonlinear wave-

particle interaction underlying transport processes in collisionless plasmas. The interaction of 

energetic particles such as cosmic rays with Alfven turbulence is also an important issue in space 

and astrophysical plasmas10. 

 

The current simulations using the gyrokinetic toroidal code (GTC)11 find that the unstable 

beta-induced Alfven eigenmodes (BAE)12 saturate due to nonlinear wave-particle interactions 

with both thermal and energetic particles. The wave frequency exhibits a fast, repetitive and 

mostly downward chirping with a sub-millisecond period and a 90o phase shift from the 

amplitude oscillation. These features have recently been observed in fusion experiments2, 

possibly suggesting a universal dynamics. Analysis of wave-particle interactions shows that the 

frequency chirping is induced by the evolution of coherent structures in the energetic particle 
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phase space. The dynamics of the coherent structures is controlled by the competition between 

the phase space island formation due to the nonlinear particle trapping and the island destruction 

due to the free streaming process. The nonlinear dynamics and chirping mechanism in the 

present studies could be applicable to other Alfven eigenmodes in toroidal geometry with radial 

variations of mode amplitude and radially asymmetric particle dynamics. 

 

GTC simulation of BAE— BAE exists inside a frequency gap of the toroidal Alfven 

continuum induced by the plasma beta (ratio of the plasma kinetic pressure to the magnetic 

pressure). BAE has been routinely observed3,13-15 in fusion experiments with a significant 

energetic particle (EP) population. It has strong interactions with both thermal and energetic 

particles16-18. Linear GTC simulations of BAE19 as well as toroidal and reversed shear Alfven 

eigenmodes20-22 have been verified by theory-simulation comparisons and by benchmarks with 

hybrid and kinetic simulations. In the current nonlinear GTC simulations, BAE is excited in a 

tokamak by the EP density gradients near the safety factor q = 2 rational surface located at a 

minor radius r0 = 0.164R0. Here R0 is the major radius, the electron density n0 is uniform, and the 

EP density at r0 is nh=0.01n0. Both thermal and energetic ions are protons with a Maxwellian 

distribution, and the temperature is taken to be uniform for all species with Te=0 and Th = 25Ti. 

Typically Th ~ 105ev for the fast ions from the neutral beam injection (NBI)2,3. The thermal 

plasma beta at r0 is β=8πn0Ti/ 2
0B =0.0072 with 0B being the on-axis magnetic field. A filter is 

applied to keep only a single toroidal mode number n=3 and the poloidal harmonics m ∈  [nq−2, 

nq+2]. Both thermal and energetic ions are governed by nonlinear gyrokinetic equations23, and 

electrons are collectively treated as a linear massless fluid24. Coulomb collisions are ignored, and 
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the parallel electric field is set to zero. Numerical convergences with respect to number of 

particles, spatial grids, and time steps have been verified. 

 

Nonlinear saturation and fast chirping— The nonlinear simulation starts with the 

small amplitude noise. The BAE mode structure forms around the mode rational surface r0, and 

the amplitude grows with a real frequency ωBAE = 0.96ω0 and a growth rate γ= 0.09ω0. Here, 

)/()22/7( 2
00 RmTT iei +=ω is the geodesic acoustic mode frequency16 with mi being the proton 

mass. The linear frequency ωBAE is slightly below ω0 due to kinetic effects of thermal and 

energetic ions19. The mode amplitude saturates at ||
iT

eδφ ~10-1 and ||
0B

Brδ ~10-4, where δφ is the 

perturbed electrostatic potential and δBr is the perturbed radial magnetic field. The mode 

amplitude exhibits a nonlinear oscillation (red curve in Fig. 1a for the n=3, m=6 harmonic at r0) 

with a period of about ten wave periods, i.e., less than one millisecond for typical experimental 

parameters. The time evolution of the wavelet power spectrum of the real part of δφ in Fig. 1b 

exhibits a regular oscillation of wave frequency ω, dominated by mostly downward chirping. For 

each time step in Fig. 1b, the frequency with the highest power intensity is selected and plotted 

in Fig. 1a as the black curve. The frequency starts with the linear value of ωBAE and chirps 

downward when the amplitude reaches a high level (t 60). Note that the steepest frequency 

descent occurs when the mode amplitude reaches the maximum, i.e., the amplitude oscillation 

has roughly a 90o phase lag behind the frequency oscillation. Then the amplitude decreases, and 

when it reaches a flattened region (t 93), the frequency starts to chirp upward. Since the mode 

amplitude is relatively low during the upward chirping, experimental measurements will mostly 

see the downward chirping. Overall, there is a small downshift of the wave frequency. All of 
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these features from our simulations have recently being observed in the NSTX tokamak 

experiment2. 

 

The fast oscillations of wave frequency and amplitude persist without external sources 

and sinks to replenish the EP distribution function, and the EP density gradients change little 

after the mode saturation, suggesting the important roles of nonlinear wave and particle 

dynamics. To delineate the nonlinearity of thermal and energetic ions, two controlled simulations 

are performed. In one simulation with nonlinear thermal ions and linear energetic ions, the 

saturation amplitude is similar to Fig. 1, but no oscillations of frequency and amplitude are 

observed after an initial frequency downshift at the mode saturation. In another simulation with 

linear thermal ions and nonlinear energetic ions, the mode saturates at the amplitude three times 

of Fig. 1 and some oscillations of frequency and amplitude are observed. Therefore, the thermal 

ion nonlinearity is responsible for the BAE saturation and the initial frequency downshift, while 

the energetic ion nonlinearity is responsible for the frequency chirping. 

 

We examine the mode structures in Fig. 2, which evolve from the linear stage before 

saturation (panel a), to the nonlinear stage after saturation (panels b and c), and back to the 

linear-like structure (panel d) when the mode amplitude starts to grow again. A prominent 

nonlinear feature is the appearance of fine scale structures in the radial direction, which may 

suggest an important role of mode coupling due to thermal ion nonlinearity in the saturation 

process25. The current simulations ignore coupling between different n modes, which is expected 

to be weaker (due to the lack of resonance condition) than self-coupling of a single n mode. 

Furthermore, the modes move slightly outward and the mode width decreases from a linear 
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width of 0.047R0 (defined as full width at half maximum) to a nonlinear width of 0.031R0. The 

downward frequency chirping enhances the Landau damping by the thermal ions, especially at 

the radial edge of the mode amplitude envelope. Therefore, thermal ions cannot be simply 

represented as a linear damping rate when describing the nonlinear BAE dynamics. 

 

Dynamics of phase-space structures— We now examine linear and nonlinear 

interactions between EP and BAE to elucidate the chirping mechanism. The resonance 

condition26 for a low-frequency wave in a general axisymmetric system is ω – k||v|| − pωt = 0 for 

passing particles, and ω − nωpre − pωb = 0 for trapped particles. Here, p is an integer number, ωt, 

ωb, ωpre are guiding center transit, bounce, and precessional frequencies27, respectively. The 

resonances induce locally large fluctuations of the perturbed distribution function hfδ  in the 

phase space. The relative strength of resonances can be inferred28 from the intensity of the EP 

entropy 2
hfδ  as a function of the equilibrium constants of motion (E, λ). Here, E is the guiding 

center kinetic energy and λ=μΒ0/E is a pitch angle parameter with μ the magnetic moment. The 

trapped-passing boundary at r0 is λ=1-r0/R0. Four resonances can be identified in both linear and 

nonlinear stages. The most prominent resonance is the precessional resonance (ω = ωd ≡ nωpre) 

of deeply trapped particles. The others include the drift-bounce resonance (ω = ωd + pωb) and 

the second harmonic resonance (ω = 2ωd) of trapped particles, and the transit resonance (ω = ωt) 

of passing particles. From linear to nonlinear stage, all resonance regions move to the lower E 

while the change in λ is much smaller. Variations of the resonance energy and radial excursions 

of resonant particles can modify ωd and may induce the wave frequency chirping through mode 

locking. The dominant radial excursions are associated with the nonlinear particle trapping as 
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indicated by island-like structures of hfδ  at the nonlinear stage with pairs of positive and 

negative density perturbations.  

 

The dynamics of the dominant precessional resonance can be simply described by a 

radially local model using canonical variables (ζ, ωd) with ζ the toroidal angle. The evolution of 

δfh/fh0 in the (ζ, ωd) phase space is shown in Fig. 3, which is plotted in the linear wave frame 

moving with an angular velocity of ωBAE/n in the EP diamagnetic direction (negative ζ−direction). 

At the linear stage (panel a), wave structures periodic in ζ but extended in ωd are formed. The 

primary precessional resonance appears as the dominant structure at ωd=ωBAE. A weaker structure 

at 2ωd=ωBAE indicates the second harmonic resonance. After the saturation (panel b), phase space 

structures move downward in ωd, and consistently, to the positive ζ−direction. Meanwhile, the 

regions of positive density perturbations (tracked by an “X”) become isotropic and coherent. The 

regions of negative density perturbations are stretched. In panel (b), the positive regions reach the 

minimum in ωd ( 15% below ωBAE), consistent with the wave frequency ω chirping downward to 

the minimum ( 15% below ωBAE). The negative regions then move upward in ωd, i.e., to the 

negative ζ−direction with respect to the positive regions, and the wave frequency thus starts to 

chirp upward. The positive regions continue to move to the positive ζ−direction and fall below 

the negative regions (panel c). The mode amplitude now decreases due to a partial cancellation 

between positive and negative regions when integrating over the velocity space (i.e., phase-

mixing). The positive regions shrink in size and continue to move to the positive ζ−direction. The 

mode amplitude then starts to increase as the positive regions pass the negative regions (panel d). 

When phase space structures become similar to the linear stage, the mode amplitude reaches the 
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maximum and the wave frequency chirps downward again. The repetitive bursts of mode 

amplitude and wave frequency chirping persist without external sources and sinks. 

 

The reduced description in Fig. 3 shows that the frequency chirping is induced by the 

evolution of coherent structures in the precessional resonance region of the (ζ, ωd) phase space, 

which propagate at the local ωd. The contribution of other sideband resonances to the evolution 

of the coherent structures and the frequency chirping is sub-dominant. The ωd variations come 

from the changes in the kinetic energy E and the radial excursions of resonant particles. The 

phase space coherent structures and the oscillations of the mode amplitude both indicate the 

onset of the nonlinear trapping of resonant particles29. However, the trapped particle dynamics in 

the current simulations is much more complex due to radial variations of mode amplitude and 

radially asymmetric particle dynamics in the toroidal geometry. 

 

Nonlinear particle dynamics— For the precessional resonance that preserves the 

magnetic moment and the longitudinal invariant in an axisymmetric toroidal system, the 

nonlinear dynamics of guiding centers can be completely described by a pair of action-angle 

variables (ζ, Pζ) with Pζ =gv||-ψ the canonical angular momentum, 2πg the poloidal current27, ψ 

the poloidal flux function labeling the radial position r. We examine the structure of the EP 

distribution function in the (ζ, Pζ) space by tracking nonlinear orbits of deeply trapped particles. 

The particle positions are plotted in the (ζ, Pζ) space with the color representing the initial Pζ 

values, which are approximately the radial position since Pζ -ψ for deeply trapped particles.  
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In the linear phase, when BAE amplitude grows to an appreciable level, resonant 

particles are strongly perturbed around the mode rational surface (dashed line in Fig. 4). The EP 

distribution function thus develops a wave-like structure in ζ (panel a). As particles move 

outward (inward) in the radial position r, the kinetic energy E decreases (increases) due to the 

constraint of the longitudinal invariant30, and the precessional drift ωd decreases (increases) since 

ωd~E/r. Therefore, the upper (lower) Pζ regions of the structures move to the right (left) and the 

structures steepen. When the upper Pζ regions move to the opposite phase of the wave, resonant 

particles originally moving outward are now convected inward and turn around to the left due to 

the increased ωd (panel b). However, the resonant particles originally moving inward are not all 

convected outward. Most of them continue to move to the left with the local ωd (i.e., free 

streaming) to form phase-mixing structures in the lower Pζ region. Therefore, the evolution of 

the mode structure and the onset of nonlinear particle trapping are not radially symmetric. 

Particles moving outward (red region in Fig. 4) create positive density perturbation, which form 

coherent structures (red region in Fig. 3) in the phase space since ωd decreases together with the 

wave frequency ω (i.e., phase locking). On the other hand, particles moving inward (blue region 

in Fig. 4) create negative density perturbation structures (blue region in Fig. 3), which are 

distorted quickly since ωd increases (i.e., detuning). This radially asymmetric particle dynamics 

explains the different evolution of the structures for positive and negative density perturbations 

in Fig. 3. As the wave frequency chirps downward, the dominant resonance regions in Fig. 4 and 

the mode structures in Fig. 2 moves outward. 

 

The phase space islands are then formed and the tail of an island (blue region in panel (c) 

of Fig. 4) moves below another island to the negative ζ−direction. The mode amplitude thus 
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decreases and the ωd increases, i.e., up chirping of the wave frequency. The width of the islands is 

within the radial domain of r/R0 ~[0.1, 0.2], which is comparable to the radial mode width in Fig. 

2. Therefore the radial variations of the mode amplitude are important to the nonlinear dynamics 

of resonant particles. The Pζ  variations of the coherent structures gives rise to large spreads in ωd 

that can easily induce the wave frequency chirping range of ~15%. Finally, the phase space 

islands29 in panel (c) quickly become anisotropic structures in panel (d) before trapped particles 

execute a full rotation. The parts of the islands far away from the mode rational surface are 

formed by resonant particles moving to the edge of the radial envelope of the mode amplitude. 

These particles now experience weaker ExB radial convection and thus propagate at the local ωd. 

The spreads of ωd at each ζ location then stretches the islands into fragmented structures (panel d) 

due to the free streaming process. The associated linear phase-mixing effect is further enhanced 

by the dependence of the ωd variation rate (dωd/dψ) on the magnetic moment and the longitudinal 

invariant. These radially nonlocal and multi-dimensional effects lead to the fragmented structures 

in panel (d), which are drastically different from the picture of the 1D nonlinear Landau damping 

paradigm29. When the positive (negative) region of one structure reaches the positive (negative) 

region of another structure, the wave amplitude starts to increase to form new islands, which 

stretch and destroy the structures in panel (d). The cycle of the formation and destruction of 

coherent structures in the phase space (Fig. 3) thus persists without sources and sinks. The time it 

takes for an island to stretch in the ζ-direction over a distance of the wavelength is the linear 

phase-mixing time, which defines the life time of the coherent structures and the nonlinear 

oscillation period of the wave frequency and amplitude. This linear phase-mixing time is typically 

shorter than the Coulomb collision or turbulence scattering time, which increases with the particle 

kinetic energy31. 
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Finally, several GTC simulations have been performed to scan the deviation from the 

marginality. The saturation amplitude is proportional to the square of the growth rate for 

γ/ωBAE<0.05 when the phase space island size is smaller than the radial mode width. However, 

the amplitude is roughly independent of the growth rate for γ/ωBAE>0.08 when the phase space 

island size is limited by the radial mode width, as recently observed in NSTX tokamak 

experiments32.  

 

Acknowledgements: We acknowledge fruitful discussions with H. Berk, B. Breizman, L. Chen, 

W. Heidbrink, and F. Zonca. Work is supported by US DOE SciDAC GSEP Center, China 

Scholarship Council, and National Basic Research Program of China. Simulations were 

performed using supercomputers at ORNL and NERSC. 

 

References: 

1. A. Fasoli et al., Nucl. Fusion 47, S264 (2007). 

2. M. Podesta et al., Nucl. Fusion 51, 063035 (2011). 

3. I. G. J. Classen et al., Plasma Phys. Control. Fusion 53, 124018 (2011). 

4. S. D. Pinches et al., Plasma Phys. Control. Fusion 46, S47 (2004). 

5. M. P. Gryaznevich and S. E. Sharapov, Nucl. Fusion 46, S942 (2006). 

6. W. W. Heidbrink et al., Plasma Phys. Control. Fusion 48, 1347 (2006). 

7. H. L. Berk, B. N. Breizman, and H. Ye, Phys. Rev. Lett. 68, 3563 (1992). 

8. B. N. Breizman and S. E. Sharapov, Plasma Phys. Control. Fusion 53, 054001 (2011). 

9. J. Y. Lang and G. Y. Fu, Phys. Plasmas 17, 042309 (2010). 

10. V. S. Ptuskin et al., Astrophys. J. 520, 204(1999). 



 

12 
 

11. Z. Lin et al., Science 281, 1835 (1998). 

12. A. D. Turnbull et al., Phys. Fluids B 5, 2546 (1993). 

13. W. W. Heidbrink et al., Phys. Rev. Lett. 71, 855 (1993). 

14. W. Chen et al., Phys. Rev. Lett. 105, 185004 (2010). 

15. Z. O. Guimaraes-Filho et al., Plasma. Phys. Control. Fusion 53, 074012 (2011).  

16. F. Zonca et al., Plasma Phys. Control. Fusion 38, 2011 (1996). 

17. P. Lauber et al., Plasma Phys. Control. Fusion 51, 124009 (2009). 

18. C. Nguyen et al., Plasma Phys. Control. Fusion 51, 095002 (2009). 

19. H. S. Zhang et al., Phys. Plasmas 17, 112505 (2010). 

20. W. J. Deng et al., Phys. Plasmas 17, 112504 (2010). 

21. W. L. Zhang et al., Phys. Plasmas 19, 022507 (2012).  

22. W. Deng et al., Nuclear Fusion 52, 043006 (2012). 

23. A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).       

24. I. Holod et al., Phys. Plasmas 16, 122307 (2009). 

25. Y. Todo, H. L. Berk, and B. N. Breizman, Nuclear Fusion 50, 084016 (2010). 

26. L. Chen, J. Geophys. Res., [Space Phys.] 104, 2421 (1999). 

27. R. B. White, The theory of toroidally confined plasmas. (Imperial College Press, London, 

2006).  

28. H. S. Zhang and Z. Lin, Phys. Plasmas 17, 072502 (2010). 

29. T. O’Neil, Phys. Fluids 8, 2255 (1965). 

30. Y. Xiao and Z. Lin, Phys. Plasmas 18, 110703 (2011). 

31. W. L. Zhang, Z. Lin, and L. Chen, Phys. Rev. Lett. 101, 095001 (2008). 

32. M. Podesta, private communication, 2012. 



 

13 
 

 

 

 

 

 

Figure legends: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Time evolution of (a) BAE amplitude |eδφ/Ti| (red) and dominant frequency ω (black), 

and (b) frequency power spectrum. The y-axis on the left is ω/ω0. The unit of the power intensity 

in panel (b) is arbitrary. 
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Figure 2. Poloidal contour plots of electrostatic potential (eδφ/Ti). The dotted circle is the r0 

surface. The x-axis is the major radius R/R0 and the y-axis is the vertical distance from the mid-

plane. Time steps (a)-(d) are labeled by A-D in Fig. 1. 
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Figure 3. Evolution of perturbed distribution function δfh/fh0 in (ζ,ωd) phase space.  The y-axis is 

ωd/ω0. The time evolution is tracked by “X”. Time steps (a)-(d) are labeled by A-D in Fig. 1.  
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Figure 4. Evolution of distribution function in (ζ, Pζ) space. Particle color represents initial Pζ 

(normalized by -ψw). Dashed line represents the mode rational surface. The evolution of an island 

is tracked by “X”. Time steps (a)-(d) are labeled by A-D in Fig. 1. 


