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We investigate the dependence of optical-lattice trapping potentials for Rydberg atoms on the
angular portion of the atomic wavefunction. While ground-state atoms are point-like in relation
to an optical-lattice field, Rydberg-atom wavefunctions extend over a substantial fraction of the
lattice period, which leads to a dependence of the lattice trapping potential on the angular portion
of the spatial wavefunction. The angular dependence of the potential is measured using various
(j, mj) levels of 85Rb Rydberg nD states (50≤n≤65) prepared in a one-dimensional optical lattice
(wavelength 1064 nm) and a transverse DC electric field. The measured optical lattice depths are
found to be in agreement with theoretical results.

PACS numbers: 37.10.Jk, 32.80.Ee

In optical lattices, the dependence of the optical po-
tentials on the magnetic quantum number, m, is of fun-
damental importance. For ground-state atoms, this de-
pendence has been well known since the late 1980s [1, 2]
and has been widely exploited in laser cooling experi-
ments, for example in achieving sub-Doppler tempera-
tures through the mechanism of Sisyphus cooling [3]. In
optical lattices for Rydberg atoms, an analogous depen-
dence of the trapping potentials on the m quantum num-
ber has not been previously observed. Them-dependence
of the lattice potentials affects both the trapping behav-
ior as well as lattice-induced shifts of electromagnetic
transitions of the atoms in the lattice. The tunability of
the Rydberg-atom trapping potentials using the angular
degrees of freedom will be important for applications of
Rydberg-atom optical lattices. For instance, in quantum
computing applications of such lattices [4], it is desired
to tailor the lattice in such a way that lattice-induced
shifts of ground- to Rydberg-state transitions are mini-
mized. In high precision spectroscopy applications [5], it
will be beneficial to minimize the lattice-induced shifts of
microwave transitions between selected Rydberg levels.
The trapping potential for Rydberg atoms in an op-

tical lattice arises from a ponderomotive force, akin to
the trapping force present in Paul ion traps [6]. In a
laser field with electric-field amplitude E and angular fre-
quency ω, the quasi-free Rydberg electron experiences an
energy shift given by the free-electron ponderomotive en-
ergy, Vp = e2E2/(4meω

2) [7], where e is the elementary
charge andme the electron mass. In an optical lattice, Vp
represents a periodically modulated perturbation poten-
tial acting on the Rydberg electron. The entire atom can
be trapped due to this potential since the ionic Rydberg-
atom core is weakly bound to the Rydberg electron. The
adiabatic trapping potential for the center-of-mass of the
Rydberg atom is given by [8]

Vad (R) =

∫
d3rVp (r+R) |ψ (r) |2, (1)

where R is the center-of-mass coordinate of the atom,

r is the relative coordinate of the Rydberg electron,
Vp (r+R) is the position-dependent free-electron pon-
deromotive energy, and ψ (r) is the Rydberg electron’s
probability distribution. Therefore, Vad is a spatial aver-
age of the free-electron ponderomotive energy weighted
by the Rydberg electron’s probability distribution [8].
Since the Rydberg-atom wavefunction covers a substan-
tial fraction of the lattice period, the Vad depend on all
quantum numbers (n, l, j, mj). In previous work, the de-
pendence of the adiabatic trapping potentials of the pon-
deromotive optical lattice (POL) on the principal quan-
tum number, n, has been experimentally demonstrated
using various Rydberg nS states (which do not exhibit
angular substructure) [9].

The lattice potentials for atoms in low-lying or in Ryd-
berg states are generally expected to depend on (j, mj);
however, the reasons for that dependence are quite dif-
ferent in the two cases. For atoms in low-lying states,
the lattice potential arises from an AC electric dipole
moment between bound atomic states, and the (j, mj)-
dependence reflects the Clebsch-Gordan coefficients in
the atom-field interaction [10]. This leads to intensity-
and polarization-dependent trapping potentials. In con-
trast, for Rydberg atoms in POLs, the trapping results
from the free-electron polarizability. Since the size of the
Rydberg wavefunctions is on the same order as the lattice
period, the angular portion of the Rydberg wavefunction
can have a dramatic effect on the averaging in Eq. 1,
resulting in a (j, mj)-dependence of the adiabatic poten-
tials. States having wavefunctions that mostly extend
in the plane transverse to the lattice axis will experience
more deeply modulated lattice potentials than those elon-
gated in the direction of the lattice axis. The adiabatic
potentials obtained from Eq. 1 depend on light intensity
but not on polarization. In the present work, we demon-
strate the dependence of the lattice trapping potentials
on the angular portion of the Rydberg wavefunction by
measuring the POL depth for several (j, mj) sublevels of
Rydberg nD states.

In the experimental setup, 85Rb atoms are loaded
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into a magneto-optical trap (MOT) with a tempera-
ture ∼200 µK. The one-dimensional lattice is established
by focusing a 1064 nm beam into the MOT [power of
1 W, full-width at half maximum of the intensity profile
(FWHM) of 13 µm], retro-reflecting and refocusing it.
The lattice is always on. The MOT and repumper beams
are turned off during Rydberg excitation and detection.
Ground-state atoms in the lattice are transferred to Ryd-
berg states via two photon excitation (excitation pulse
duration 0.5 µs). The lower-transition laser (FWHM
150 µm) has a wavelength of 780 nm, is ≈1.2 GHz de-
tuned from the 5P3/2 intermediate state, and is collinear
with the lattice beams. The upper-transition laser has
a wavelength of ≈480 nm (FWHM ∼15 µm), is tuned
into two-photon resonance with the 5S → nD transi-
tion, and forms an angle of about 45◦ with all other
laser beams. The number of Rydberg atoms produced is
measured by ionizing them with a ramped electric field
and detecting the freed electrons with a micro-channel
plate [11]. The number of Rydberg atoms per cycle is
about one, so that Rydberg-atom interactions are not
important. With the lattice off, the observed FWHM of
the Rydberg excitation lines are between 2-3 MHz, which
is just slightly above the width of the power spectrum of
a square pulse with 0.5 µs duration. Using the known
beam powers, beam profiles, intermediate state detuning,
and 5P -Rydberg transition matrix elements, we estimate
two-photon Rabi frequencies up to 2π× 500 kHz. Hence,
for our excitation pulse duration transition broadening
due to saturation plays no significant role. We attribute
the slight broadening of the lattice-free Rydberg excita-
tion lines to electric field inhomogeneities and the MOT
magnetic field.

In order to investigate the lattice potentials for the
(j, mj) sublevels of Rydberg nD states individually, it
is necessary to lift degeneracies. We therefore apply a
DC electric field. For technical reasons, the DC field is
oriented in the direction transverse to the axis of the lat-
tice. With the DC field applied, the Stark effect is the
dominant perturbation, with a quantization axis trans-
verse to the lattice beams. The Rydberg-atom lattice
potential varies in depth for the five Stark substates of
the nD3/2 and nD5/2 levels.

Figure 1 shows the spectrum of the 50D Rydberg
level in both the lattice and a transverse electric field of
1.6 V/cm, obtained by scanning the frequency of the up-
per transition excitation laser. The 50D3/2 and 50D5/2

levels split into a total of five components, labeled in
Fig. 1 in order of increasing energy. In the limit of small
DC field, the five components connect with the following
levels: (1) 50D3/2 |mj|=3/2, (2) 50D5/2 |mj|=5/2, (3)
50D3/2 |mj|=1/2, (4) 50D5/2 |mj|=3/2, and (5) 50D5/2

|mj|=1/2. The large peaks for each component are sig-
nal from atoms outside of the lattice (red solid arrows
in Fig. 1), while the blue-shifted triangular structures
reflect the shifts of the optical transition frequency due

to the lattice trapping potentials. Since the atoms are
laser-cooled near the bottoms of the 5S lattice wells,
the lattice-induced structures in the spectrum exhibit a
sharp cutoff on the high frequency side (dashed arrows
in Fig. 1).
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FIG. 1. (Color online.) Optical excitation spectrum of the
50D Rydberg level in the lattice and a transverse DC electric
field. The Stark components, labeled 1-5, exhibit structures
on the high-frequency side that reflect lattice-induced shifts
of the optical transitions. Inset: Ground and Rydberg levels
in the lattice. The arrows indicate how the maxima in the
experimental spectrum correlate with the shapes of the lattice
potentials.

The blue-shifted structures in the spectrum shown in
Fig. 1 yield information on the depth of the Rydberg lat-
tice for each Stark level. The maximum lattice-induced
shift consists of the ground-state modulation depth (κ5S
in the inset of Fig. 1), the Rydberg-state modulation
depth (κRyd), and an offset (κo). The offset can arise
from an imbalance of the intensities of the lattice beams,
leading to a reduced lattice intensity modulation depth.
There also is a contribution to κo from the intrinsic av-
eraging in Eq. 1. Due to the averaging, the value of κo
does not reach zero even in a perfectly modulated lat-
tice. Here, we are interested in how κRyd depends on the
angular structure of the five Stark levels. The inset of
Fig. 1 shows that κRyd can be obtained by subtracting
κo and κ5S from the measured maximum lattice-induced
shift. The ground-state lattice depth, κ5S, is fixed. For
an independent measurement of κo, we invert the lattice
potential immediately before Rydberg excitation using
an electro-optic technique [12]. Following the lattice in-
version, the ground-state atoms are located near maxima
in the ground-state potential. Before they move away,
they are excited to minima of the Rydberg-state potential
(green dotted arrow in the inset of Fig. 1 and correspond-



3

ing curve in Fig. 2). Measurement of the lattice-induced
shift in the inverted lattice case yields κo.

In the experimental spectra, signal from atoms outside
of the lattice (solid red arrows in Fig. 1) tends to over-
whelm the desired signal from the atoms inside the lat-
tice. To address this issue, we apply a “dumper” pulse
between the turnoff of the MOT laser beams and the
application of the excitation pulses. The dumper pulse
has a duration of 25 µs and is resonant with the 5S1/2,
F=3 → 5P3/2, F

′=2 transition. The dumper optically
pumps atoms outside of the lattice into the F=2 ground-
state. Following the dumper pulse, only the F=3 atoms
left in the lattice are accessible for optical excitation to
the Rydberg state, resulting in a cleaner spectrum of the
lattice-induced shifts.
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FIG. 2. (Color online.) Optical excitation spectra for level 2
of Fig. 1 in a transverse DC field and a non-inverted lat-
tice and inverted lattice. Spectral features, indicated by
arrows, enable a measurement of the Rydberg-state lattice
depth (κRyd).

In Fig. 2 we show typical optical excitation spectra of
level 2 from Fig. 1 for the two cases of an inverted and a
non-inverted lattice. The dumper is engaged to the right
of the dashed segments in the data in Fig. 2, leaving the
unshifted signal as a frequency reference (the large peak
at 0 MHz). Figure 2 clearly shows that the peak in the
inverted-lattice spectrum is shifted from that in the case
of the non-inverted lattice. As indicated in the figure,
we use the peak positions to determine the shifts κo and
κo + κ5S + κRyd.

To extract κRyd from the spectra, one must consider
exactly how the experimentally observed peaks in the
lattice-induced features are related to the various values
of κ. For the inverted lattice, the ground-state atoms are
located near a saddle point of the lightshift potentials,
which results from mismatched spot sizes of the two lat-
tice beams. In the utilized experimental setup, there is

an unavoidable mismatch. The corresponding peak in
the excitation spectrum (green dotted arrow in Fig. 2)
is broadened both to the low- and high-frequency sides,
due to atoms that are displaced from the saddle point
radially and longitudinally relative to the lattice axis, re-
spectively. Due to the balanced broadening, the peak
center gives an accurate reading for κo. In contrast, for
the non-inverted lattice the ground-state atoms are lo-
cated near a three-dimensional intensity maximum, not a
saddle point. Therefore, any thermal spread of the atoms
away from the intensity maximum causes a shift of the
Rydberg-atom excitation frequency to lower frequencies.
Hence, in the non-inverted lattice the excitation spec-
trum is only broadened to the low frequency side, and the
peak in the spectrum is shifted toward lower frequency.
To obtain a quantitative estimate for how far the peak
is shifted, we have simulated the excitation spectrum for
temperatures ranging from 100-300 µK for lightshift po-
tentials that correspond to our experiment. The simu-
lated spectra show that the frequency corresponding to
a one-third drop in signal from the peak (blue dashed ar-
row in Fig. 2) approximates the value of κo + κ5S + κRyd

to within ±1 MHz. The procedure is indicated in Fig. 2.
With this reading, the reading for κo, and the fixed value
of κ5S, the Rydberg lattice depth κRyd is obtained. To in-
vestigate the angular dependence of the POL potentials,
we repeat the procedure explained in Fig. 2 for several
other nD and (j, |mj |) levels. The measurement results
are listed in Table I.

TABLE I. POL Depth Measurement Results

Level Measured κRyd (MHz) Label

65D5/2 |mj|=5/2 -4.1±3 A

55D5/2 |mj|=5/2 1.4±3 B

50D5/2 |mj|=5/2 4.5±3 C

65D5/2 |mj|=1/2 1.1±3 D

55D5/2 |mj|=1/2 10.0±3 E

50D5/2 |mj|=1/2 9.5±3 F

We find that the values of κRyd clearly vary from state
to state, demonstrating the angular dependence of the
Rydberg lattice depth. We compare our measured results
with calculated κRyd values for the cases studied in the
experiment. In the calculation, the depth of the Rydberg
adiabatic potentials was obtained by numerical diagonal-
ization of the Rydberg atoms’ internal-state Hamiltonian
at the light-field maxima and minima. The lattice depth
for a given Rydberg level is given by the difference be-
tween that level’s energy at these two locations. It is
noted that the computation requires large Rydberg-state
basis sets, since the system does not have any continuous
symmetry in crossed electric and lattice-induced fields.

In Fig. 3, the experimental measurements of κRyd are
plotted against the calculated values. The data follow the
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FIG. 3. Symbols: Measured vs. calculated POL potential
depths for the levels listed in Table I. The error bars reflect
systematic and measurement uncertainties. Line: A linear fit
to the data points.

expected trend, as the linear fit to the data has a slope
of one and passes through the origin within the bounds
of the fitting uncertainty. The error bars in Fig. 3 reflect
the measurement and systematic uncertainties associated
with the data.

The measurement uncertainty is ±1 MHz and mostly
arises from the uncertainty associated with measuring
the lattice-induced shift in the non-inverted lattice, as
described above. Systematic error sources include daily
variations in optical lattice alignment. Comparing day-
to-day results, we estimate an alignment-induced uncer-
tainty of ≈ 2 MHz. The excitation laser is locked to a
tunable Fabry Perot (FP), and a source of systematic er-
ror is also thermal drift of the FP. Monitoring the count
rate as a function of time with the laser initially set to
the peak of a Rydberg excitation line of known width,
we found a thermal drift uncertainty of ≈ 1 MHz. Non-
linearity in the FP mechanical tracking (the experimen-
tal method used to scan the laser across the spectrum)
also adds to the systematic error. By scanning the laser
repeatedly over a fixed frequency range, we found a me-
chanical tracking uncertainty of . 2 MHz.

In order to obtain further insight into the angular de-
pendence of the POL potentials and to interpret the mea-
sured negative values of κRyd, we calculated κRyd for (j,
mj) levels of nD states as a function of DC field. The
result for 65D is shown in Fig. 4 (curve labels correspond
to the ones in Fig. 1). For DC field values . 0.05 V/cm,
the fine structure is dominant and the DC field provides
a small perturbation. For DC field values & 0.1 V/cm,
the DC field effects dominate the fine structure; however,
the DC field is still weak enough to largely avoid mixing
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FIG. 4. Calculated depth of the 65D POL potentials, κRyd, in
units of the free-electron POL depth, κfree, for various Stark
levels as a function of DC field. The level labeling follows the
scheme used in Fig. 1. Negative POL depths correspond to
cases in which the Rydberg-atom center-of-mass is attracted
to intensity maxima in the lattice.

of the D states with neighboring P and F states. Be-
tween the fine-structure- and the electric-field-dominant
regimes, the angular wavefunctions rearrange, causing a
reshuffling of the curves around 0.07 V/cm in Fig. 4.
The structures in the curves near 0.25 V/cm and 1.1
V/cm are due to crossings of Stark states in the electric-
field-dominant regime. For states with negative κRyd,
the extent of the Rydberg wavefunction along the lattice
axis approximately equals the lattice period. While the
center-of-mass of the atom is located at an intensity max-
imum, the lobes of the electronic probability distribution
are located at adjacent intensity minima, where they ex-
perience a minimal ponderomotive energy. The Rydberg
center-of-mass is attracted to the lattice intensity max-
imum located between the wavefunction lobes. In this
case, the minima of the adiabatic Rydberg-atom trapping
potential are co-located with the minima of the ground-
state potential. This condition will be desirable in ap-
plications because it allows for straightforward prepara-
tion of trapped Rydberg atoms from red-detuned optical
traps for ground-state atoms. The ability to shape the
Rydberg-atom potentials using the angular structure of
the wavefunction blends into work performed elsewhere,
in which magic-wavelength optical lattices for Rydberg
atoms are pursued [13].

We have provided an experimental demonstration of
the angular dependence of the POL potentials for Ryd-
berg atoms. Lattice depths for (j, mj) sublevels of nD5/2

states were measured and found to vary substantially in
magnitude. We have also demonstrated that certain as-
pect ratios of atom size to lattice period result in Rydberg
lattice potential depths that are sign-matched with the



5

ground-state potential depths. In future work, we con-
sider the preparation of highly elongated Stark states in
the optical lattice using larger DC fields. Such states
have essentially one-dimensional atomic wavefunctions
oriented in the direction of the transverse field, leading
to very deep trapping potentials. Since they also have
large permanent electric dipole moments, such a system
could provide a platform to study strong interactions and
many-body effects in systems of optically trapped Ryd-
berg atoms.
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