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Georg Menzl,1 Jürgen Köfinger,2 and Christoph Dellago1, ∗

1Faculty of Physics and Center for Computational Materials Science,

University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
2Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases,

National Institutes of Health, Bethesda, Maryland, 20892-0520 USA

Using computer simulations, we study a membrane of parallel narrow pores filled with one-
dimensional wires of hydrogen-bonded water molecules. We show that such a membrane is equivalent
to a system of effective charges located at opposite sides of the membrane offering a computationally
efficient way to model correlation effects in water-filled nanopore membranes. Based on our sim-
ulations we predict that membranes with square pore lattice undergo a continuous order-disorder
transition to an anti-ferroelectric low-temperature phase, in which water wires in adjacent pores
are oriented in opposite directions. Strong anti-ferroelectric correlations exist also in the disordered
phase far above the critical temperature or in membranes with geometric frustration, leading to a
dielectric constant that is reduced considerably with respect to the case of uncoupled water wires.
These correlations are also expected to hinder proton translocation through the membrane.

Water molecules in narrow pores of nanometer di-
mensions arrange in single-file chains that are orienta-
tionally ordered over macroscopic lengths [1]. This or-
der gives rise to the unique properties of nanopore wa-
ter, such as high sensitivity to electric fields, high flow
rates, and rapid proton transport [1–4]. In biological sys-
tems, protein pores spanning the cell membrane are filled
with single-file water and regulate proton, ion, and water
transport in and out of the cell [5, 6]. Technologically,
nanopore membranes can be realized with narrow carbon
nanotubes (CNTs) [2, 7], which fill if immersed in water
as predicted in simulations [5] and confirmed in exper-
iments [8]. Possible technical applications of nanopore
membranes range from filtration and desalination to fuel
cells and sensing devices [7, 9–12].

To date, the rich behavior of water inside channels
with sub-nanometer diameter has been studied in de-
tail mainly for single nanotubes [5]. Interactions be-
tween water wires in membranes of parallel nanotubes,
however, can lead to collective effects, drastically alter-
ing the behavior of nanopore water. In this Letter, we
use computer simulations to investigate such cooperative
effects, which lead to a phase transition from a disor-
dered high-temperature phase to an anti-ferroelectrically
ordered arrangement of water wires at low temperatures.
Pronounced anti-ferroelectric correlations persist above
Tc, strongly reducing the dielectric susceptibility and in-
fluencing proton passage across the membrane. As shown
below, the order-disorder transition can be understood in
terms of effective Coulombic charges located on opposite
sides of the membrane, relating the behavior of water-
filled nanopore membranes to that of two-dimensional
(2d) Coulomb gases. The critical temperature and di-
electric response, computed in simulations, can be mea-
sured in the laboratory providing a way to experimentally
probe the striking properties of water in one-dimensional
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FIG. 1: (a) Schematic representation of a membrane of par-
allel water-filled pores arranged in a square geometry. The
single-file chains are ordered, i.e., all hydrogen bonds of a
chain point into the same direction. (b) Dipole lattice model
with pore spacing d and membrane thickness L. Water
molecules are represented by dipoles separated by the distance
a in pore direction. The equivalent charge representation is
illustrated by charges located on both sides of the membrane.
(c) Interaction energy φ(R) of two parallel wires of L = 24 in
the dipole (red) and charge picture (blue) versus distance R.

(1d) confinement.

When a nanopore membrane is immersed in water, the
pores are penetrated by water molecules that align them-
selves in chains stabilized by hydrogen bonds and dipolar
interactions, as illustrated in Fig. 1(a). The orientational
order imposed on the water molecules by the tight hy-
drogen bonds persists over long distances, but can be
perturbed by orientational defects that form where two
chain segments with opposite orientation meet. Since at
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ambient conditions the creation energy for such defects
is high compared to the thermal energy, water chains of
up to 105 molecules typically exist in one of two perfectly
ordered states with orientations parallel or antiparallel to
the pore axis. Transitions between these two states occur
through the migration of orientational defects along the
water wire, providing a mechanism for the reorganization
of the wire configuration [4].
Due to the strong hydrogen bonds that couple adja-

cent water molecules, their orientational freedom in the
chain is limited. Consequently, the essential features of
1d water wires are captured by a simple dipole lattice
model consisting of a regular 1d lattice with spacing a,
in which each site is either empty or occupied by a point
dipole of magnitude µ that can either be parallel or an-
tiparallel to the pore axis [1]. Orientational defects are
represented by dipoles orthogonal to the pore axis. In
this model, the total energy is written as a sum of contact
interactions between neighboring water molecules, which
account for the hydrogen bonds, and dipole-dipole inter-
actions, as well as entropic contributions that arise from
the larger configurational freedom of water molecules at
chains ends and defect sites. Parametrized using data
obtained from atomistic molecular dynamics simulations,
the model faithfully reproduces the dynamical and struc-
tural key features of water confined in a single nanopore
[1, 4]. Here, we generalize the model to take into account
the interactions between water molecules inside different
pores of the membrane. This coupling is added to the
single-pore energies and leads to collective effects as dis-
cussed below. It is given by the sum of all inter-pore
dipole-dipole interactions,

Hinter = ε
∑

i,j

sisj
r3ij

[1− 3 cos2 θij ], (1)

where the sum goes over all pairs of dipoles located in
distinct pores. Here and in the following, all distances
are given with respect to the water molecule spacing a.
The variable si = ±1 if the dipole at site i is parallel
or anti-parallel to the pore axis, respectively, or si = 0
if site i carries a defect or is unoccupied. The dipoles
are arranged on a regular lattice of finite thickness in
direction of the pore axis, i.e., in z-direction. The vec-
tor rij = rj − ri of length rij connects site i with site
j and forms an angle θij with the z-axis. We consider
membranes of N pores arranged in a square or triangu-
lar geometry, applying periodic boundary conditions in
the xy-plane. The pore spacing is d and each pore is
filled with L water molecules separated by a = 2.65 Å
in pore axis direction. The magnitude of the dipole mo-
ment in axis direction is µ = 1.9975D, as computed in
fully atomistic molecular dynamics simulations of single-
file water in a carbon nanotube [1], and the constant
ε = µ2/(4πǫ0a

3)=12.9118 kJ/mol, sets the energy scale
of the model [1].
Monte Carlo simulations of membranes in this dipole

picture indicate that for ambient temperatures and be-
low, dipole moments whithin one chain are predomi-

nantey oriented into the same direction and this order
is enhanced by inter-pore interactions compared to iso-
lated tubes. For such ordered wires, the Hamiltonian
can be simplified considerably using an equivalent de-
scription based on effective Coulombic charges [1, 14].
These charges, with magnitude µ/a and a sign deter-
mined by the dipole orientations, are located at the end-
points of the water wires as depicted in Fig. 1(b). As
shown in Fig. 1(c), the dipole and the charge represen-
tations yield essentially indistinguishable inter-pore in-
teractions for distances larger than about 2a, justifying
this approximation for nanopore membranes. The total
inter-pore energy in the charge picture is given by

Hinter = 2ε
∑

i,j

SiSj





1

Rij

− 1
√

R2
ij + L2



 , (2)

where the summation is over all pairs of pores of the
membrane. Here, Si = ±1 depends on the orientation
of the entire dipole chain in pore i and Rij is the dis-
tance in the xy-plane between pores i and j. As a re-
sult, we have mapped the water filled membrane onto a
2d spin lattice model with distance dependent interac-
tions. These interactions describe a system of charges
arranged on two parallel planes, separated by a distance
L, and coupled by the constraint of global charge neu-
trality. For pore-pore distances small compared to the
membrane thickness, the interaction energy is dominated
by charge-charge interactions within the planes leading
to 1/R behavior. For larger distances, interactions be-
tween charges on opposite sides of the membrane be-
come important and the interaction energy turns into
a dipole-dipole interaction with 1/R3-dependence. By
changing the membrane thickness, one thus controls the
crossover distance Rc = L/

√
2 between these two inter-

action regimes, strongly influencing the thermodynamics
of the system [see Fig. 1(c)].
Based on the Hamiltonian in the charge picture, we

investigate the phase behavior of the water-filled mem-
brane using Wang-Landau flat histogram sampling [15]
[23] and histogram reweighting [16]. Coulombic inter-
actions are treated with Ewald sums for a slab geome-
try [17]. For a square arrangement of membrane pores,
we find an anti-ferroelectrically ordered low-temperature
phase, in which water chains in neighboring pores point
in opposite directions, creating a “checkerboard” pattern.
When the temperature is increased, the system under-
goes a continuous phase transition of the 2d Ising uni-
versality class to a disordered phase. A finite size analy-
sis based on Binder cumulants [18], carried out for fixed
pore spacing d and varying chain lengths L, yields the
phase diagram shown in Fig. 2. The critical temperature
for other membrane dimensions can be easily obtained
using a law of corresponding states. The Hamiltonian
given in Equ. (2) changes by a factor L′/L if L and d
are changed to L′ and d′ in a way that leaves their ratio
unchanged, i.e., L/d = L′/d′. Consequently, the temper-
atures T and T ′ of these corresponding states are related
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FIG. 2: Critical temperature Tc of a water-filled membrane
with pores arranged on a square lattice with spacing d = 10
and thickness varying from L = 1 to 100. The dash-dotted
line and the dashed line correspond to Tc of 2d spin models
with 1/R3 and 1/R interactions, respectively. Inset: Heat
capacity cv per molecule for L = 50, d = 10 and different
system sizes N . Tc is shown as vertical line.

via T ′ = (d/d′)T = (L/L′)T .
As shown in Fig. 2, the critical temperature Tc strongly

increases with chain length L for thin membranes and
converges to a constant value for thick membranes. In
both regimes, the dependence of the critical tempera-
ture on the membrane thickness can be understood in
terms of the charge picture. For a membrane thickness
small compared to the pore spacing, the system resem-
bles a 2d spin model with dipolar coupling governed by
the Hamiltonian Hd

inter = εL2
∑

i,j SiSj/R
3
ij . From the

critical temperature computed numerically for this model
[19], θdc = 2.37 in reduced units, a critical temperature
of kBT

d
c = (1/2)εθdcL

2/d3, where kB is Boltzmann’s con-
stant, follows in the thin membrane limit, reproducing
very well the behavior of Tc for small L/d.
If the membrane thickness L is increased beyond the

pore spacing d, the critical temperature starts to devi-
ate from the thin membrane prediction and converges to
a constant value (see Fig. 2), as can be understood in

the charge picture. The cross-over distance Rc = L/
√
2

between 1/R and 1/R3 coupling grows linearly with
L and more of the water wires interact Coulombically.
In the thick membrane limit, charges on opposite sides
of the membrane effectively do not interact with each
other but fulfill global charge neutrality. In this limit,
the system behaves like an anti-ferroelectrically coupled
spin model with 1/R interactions with a Hamiltonian
Hq

inter = 2ε
∑

i,j SiSj/Rij , where the factor 2 accounts
for two layers of charges, one on each side of the mem-
brane. The critical temperature becomes kBT

q
c = 8εθqc/d,

where the critical temperature θqc = 0.1031 has been de-
termined numerically in Ref. [20]. Figure 2 shows that Tc

indeed converges towards this asymptotic L-independent
value.
The phase diagram of Fig. 2 offers the possibility to ex-

tract microscopic information on the energetics of single
file water from experimental data, encoded in the energy
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FIG. 3: Dielectric susceptibility χ of a membrane of N =
30 × 30 pores arranged on a square (squares) and triangular
(triangles) lattice of spacing d = 10 and various wire lengths
L as a function of temperature T . The vertical dashed lines
indicate the respective critical temperatures.

constant ε = µ2/(4πǫ0a
3). The latter can be determined

from calorimetry measurements of the critical tempera-
ture and a subsequent comparison to its predicted value
(see inset of Fig. 2). For a pore spacing of d = 5, a
value close to the spacing of close packed (6, 6) carbon
nanotubes, the critical temperature is predicted to be
Tc ≈ 260 K, which should be easily accessible in experi-
ments.
Dielectric spectroscopy experiments offer an alterna-

tive route to study the interactions and order proper-
ties of water-filled membranes experimentally. The di-
electric response is of particular interest as 1d chains
of dipoles have been considered as candidates for high-
k dielectrics [11, 12]. The dielectric susceptibility χ0 =
βNL2µ2/(ε0V ) of a membrane of uncoupled water wires
with volume V = Nd2L can indeed be very large, since
each chain fluctuates freely between the two states of op-
posite orientation [4]. Anti-ferroelectric correlations due
to inter-pore interactions, however, strongly reduce the
susceptibility with respect to χ0.
We calculate the dielectric susceptibility χ =

β〈M2〉/ (ε0V ) in our simulations from the equilibrium
fluctuations of the total dipole moment M [21]. Fig. 3
shows results for χ as a function of temperature for a
square and a triangular membrane with pore spacing of
d = 10 for various wire lengths. For a square lattice be-
low the critical temperature, the system is ordered and
the susceptibility χ is very small because each wire is es-
sentially locked in one of the two possible orientations.
For temperatures above Tc, both orientations are acces-
sible to the water wires but persisting anti-ferroelectric
correlations diminish the fluctuations with respect to the
uncoupled case. For thick membranes, the susceptibility
is flat for temperatures above the critical point. Since the
susceptibility is proportional to the dipole moment fluc-
tuations and to the inverse temperature, this behavior
indicates that a linear increase of the fluctuations with
temperature is the reason for these plateaus. In the case
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FIG. 4: Dielectric susceptibility χ at T = 298 K for mem-
branes of various thicknesses L as a function of the pore spac-
ing d with triangular (triangles) and square (squares) lattices.
Inset: Ratio χ/χ0 of the susceptibility χ and the susceptibility
χ0 of the membrane with non-interacting water wires.

of the triangular lattice, geometric frustration prevents
a sharp drop of the susceptibilities at low temperatures
(see Fig. 3). Above the critical temperature, the lattice
geometry has only little influence on the susceptibilities
and we observe similar temperature dependence for both
geometries.
The orientational correlations between neighboring

water wires can also be controlled by adjusting the pore
density of the membrane. Figure 4 shows the suscepti-
bility as a function of the pore spacing d for square and
triangular lattices. At T = 0.1919ε/kB, corresponding
to T = 298 K, the system with square lattice is anti-
ferroelectrically ordered only for very small pore spac-
ings. In this regime, dipole fluctuations are inhibited
leading to a small susceptibility. For larger pore spac-
ings, i.e., lower pore densities, the coupling between in-
dividual water wires becomes weaker leading to larger
fluctuations in the total polarization. At the same time,
the water density decreases and these two competing fac-
tors lead to a maximum of χ as a function of d above the
critical point. Remarkably, anti-ferroelectric correlations
persist for rather large pore spacings such that the un-
coupled wire limit of the susceptibility is reached only for

very small pore densities (see inset of Fig. 4). Such cor-
relations lead to small susceptibilities also for triangular
lattices, where geometric frustration prevents the system
from entering an ordered phase at low temperatures.

In summary, our results demonstrate the emergence
of long-range order in water-filled nanopore membranes,
which offer a way to realize 2d Coulomb lattice sys-
tems and study their phase transitions experimentally.
By controlling the membrane thickness, the coupling of
the lattice system can be switched from 1/R3 to 1/R.
The preferred staggered orientation of water chains leads
to a strong reduction of the dielectric constant com-
pared to uncoupled water wires [4]. Based on our re-
sults, calorimetry and dielectric spectroscopy measure-
ments can probe the microscopic properties of nanopore
water including the nearly macroscopic orientational or-
der of single-file water chain, which has not been detected
experimentally yet. The anti-ferroelectric correlations
observed in our simulations, which persist even at tem-
peratures above the critical point, are also expected to
strongly affect the proton transport properties of water-
filled membranes of technological interest as materials
for hydrogen fuel cells [10]. As the passage of a proton
along a water wire leads to the inversion of the wire orien-
tation, anti-ferroelectric correlations, responsible for the
reduced susceptibility, are also expected to hinder proton
transport through the pores, lowering the overall proton
conductivity of the membrane. A dielectric medium fill-
ing the spaces between pores could partly neutralize the
charges at the pore ends, decrease the inter-pore interac-
tions, and thus increase proton conductivity. The inter-
pore interactions studied in this Letter should also affect
the filling/emptying transition of nanopore membranes
[22] and may lead to a true phase transition also in this
case.
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