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Joint Quantum Institute and Department of Physics,
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We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-
dependent force operations commonly used to implement entangling gates in trapped-ion systems.
This extension of the Mølmer-Sørensen gate can theoretically suppress the effects of certain fre-
quency and timing errors to any desired order and is demonstrated through Walsh modulation of
a two-qubit entangling gate on trapped atomic ions. The technique is applicable to any system of
qubits coupled through collective harmonic oscillator modes.

PACS numbers: 03.67.-a, 37.10.Ty

The use of spin-dependent forces to create entangled
quantum systems has become widespread [1–4] and is
currently the technique used for the highest fidelity multi-
qubit operations [5]. This powerful technique, first pro-
posed in [6–8], has been used to implement quantum algo-
rithms [9], create large entangled states [10], test quan-
tum fundamentals [11, 12], and perform simulations of
quantum magnetism [13, 14] and quantum field theory
[15]. As these types of experiments are scaled to larger
numbers of qubits and more complex algorithms, the ac-
cumulation of gate errors will eventually require quantum
error correction. Because of the large overhead required
for quantum error correction, it is important that qubit
operations be optimized passively in terms of speed and
robustness to non-ideal control environments. In this pa-
per, we show how ideas similar to the spin-echo pulse
sequence [16] and those developed in the context of dy-
namical decoupling [17–19] can be used to optimize the
Mølmer-Sørensen (MS) gate that is based on the spin-
dependent force.

Spin-dependent force gates operate by coupling qubit
states to a collective external degree of freedom referred
to as a quantum bus. The coupling is switched on for
an amount of time that introduces a particular phase be-
tween the spin states and leaves them disentangled from
the external degree of freedom at the end of the gate.
While the relative spin phase is robust due to geomet-
ric features [20], the disentanglement of the qubit space
and the quantum bus at the end of the operation may
be more susceptible to experimental errors and is equally
crucial to achieving a high fidelity gate. Errors caused
by noise on the energy splitting of the qubit can be sup-
pressed by the insertion of an additional swapping pulse
on the qubit states in the middle of a two qubit gate [21]
or, as proposed in [22], by a π phase shift in the drive
field. In this Letter, we present analytic results which
extend these ideas and show how frequency and timing
errors can theoretically be suppressed to any desired or-
der with an optimized gate sequence that does not rely
on the insertion of additional π pulses within the gate.
Furthermore, the technique is demonstrated using atomic
hyperfine qubits driven by a stimulated Raman process

and shown to be more robust to certain errors than the
operation described in the original proposal [6]. Similar
to the single-qubit composite pulses [23] originally de-
signed for NMR experiments now being in widespread
use in other quantum information systems, this compos-
ite pulse should be applicable to any system of qubits
coupled to a driven harmonic oscillator such as super-
conducting flux qubits [24] or cavity QED [22].
In trapped-ion systems, the spin-dependent force cou-

ples internal atomic states of neighboring ions through
the collective modes of motion generated by the Coulomb
interaction. In the MS scheme, a spin-dependent
force is created by off-resonantly driving the red and
blue sideband transitions simultaneously. The interac-
tion Hamiltonian takes the form Ĥ = Ω/2(σ̂+e

iφs +
σ̂−e

−iφs)(âe−iδteiφm + â†eiδte−iφm) where Ω is the side-
band transition frequency, σ̂± are the raising and lower-
ing operators for the qubit,

{

â†, â
}

are the creation and
annihilation operators for the collective harmonic oscil-
lator mode, and δ/2π is the symmetric detuning of the
drive field from the sidebands [6]. The spin phase φs =
(φb + φr)/2 and the motional phase φm = (φb − φr)/2
are determined by the phase of the red and blue drive
fields. For the general case of N ions, the time-evolution
operator is given by,

Û(t) = e−i
∫

t

0
dt′Ĥ(t′)− 1

2

∫
t

0
dt′

∫
t′

0
dt′′[Ĥ(t′),Ĥ(t′′)] (1)

= eŜN (α(t)â†−α∗(t)â)e−iΦ(t)Ŝ2
N , (2)

where the total spin operator is given by ŜN =
∑N

i=1 σ
(i)
+ eiφs + σ

(i)
− e−iφs , the time-dependent displace-

ment coefficient is α(t) = Ω/2
∫ t

0
dt′e−iδt′eiφm and Φ(t)

is a time-dependent phase that depends only on Ω and δ.
When a collection of trapped ions that are each identi-
cally prepared in an eigenstate of σ̂z evolves according to
(2), the spin-dependent displacement operator splits the
motional wavepacket into N+1 pieces that execute circu-
lar trajectories in phase space according to the definition
of α(t). The term in (2) proportional to Ŝ2

N imprints
a relative phase on the various spin states, allowing the
operation to be used as an entangling operation.
In order to prepare a pure spin state with this type of



2

operation, the entanglement between the spin and motion
must disappear at the end of the gate. When the gate
time tg is not equal to 2πj/δ, where j is any non-zero inte-
ger, the motional wavepackets do not trace out closed tra-
jectories in phase space and therefore will not be fully dis-
entangled from the spin state. The required level of preci-
sion grows with higher temperatures since the overlap be-
tween two states separated in phase space decreases expo-
nentially with temperature. To see this, consider a qubit
under the influence of the time evolution operator in (2).
If the initial motional state is assumed to be a Gaus-
sian state ψ(x) with an uncertainty in position ∆x and
we describe a small timing or detuning error in the gate
operation as an unintentional momentum displacement
~q, then the overlap between the two motional states is
given by

∫∞

−∞
dx ψ∗(x)e−iqxψ(x) = exp

[

− 1
2 (q∆x)

2
]

. For
a harmonic oscillator in a thermal state, ∆x increases
approximately as

√
T for kBT > ~ω meaning that the

overlap between the two states decreases exponentially.
As shown in Fig. 1(a), a small detuning error can largely
be corrected with a second pulse whose phase has been
shifted by π. We now discuss how to generalize this sim-
ple pulse sequence in order to suppress larger errors of
this type.

Suppose there is a symmetric error ∆ in the detuning
such that δ = 2π/tg + ∆ that could be the result of a
change in the trapping frequency. The error in the oper-
ation results in some residual entanglement between the
spin and motion that can be quantified by the magni-
tude of α0(tg) = Ω/2

∫ tg
0 dte−iδt, (which goes to zero for

∆ = 0 at tg = 2πj/δ). We will show that by switching
either φs or φm between 0 and π at times prescribed by
certain Walsh functions, the effect of ∆ on the magni-
tude of α(tg) can be suppressed to any order. A Walsh
function, denoted here as W (k, x), is a piecewise con-
stant function that alternates between the values ±1 at
certain values of x depending on the dyadic-ordered in-
dex k [25], (see Fig. 1(b)). If φr and φb shift together
between 0 and π, then φs shifts between 0 and π, but φm
remains constant and can be assumed to be 0 without
the loss of generality. Note the effect of the phase shift
φs = 0 ⇒ φs = π is equivalent to shifting the motional
phase φm = 0 ⇒ φm = π while keeping φs constant.
Both of these phase shifts are equivalent to the mapping
Ĥ ⇒ −Ĥ , which can also be achieved with π pulses on
the qubit states as done in [21]. Although the π phase
shifts and π rotations are ideally equivalent, the phase
shift switching time and precision is limited by electron-
ics whereas the microwave rotations depend on qubit con-
trol that might be subject to the same noise source that
generates ∆. If the times at which phase shifts occur
are determined by the zero crossing times of W (k, t/tg),

then ŜN = W(k, t/tg)
∑N

i σ
(i)
+ + σ

(i)
− ≡ W(k, t/tg)X̂N .

When modulating φs in this manner, the displacement

FIG. 1. (a)The phase space trajectory of the motional
wavepackets of a single ion during aW(1, t/tg) spin-dependent
force operation with a small detuning error, ∆/δ ≪ 1. The
solid and dashed curves show the two different trajectories
taken by the two different wavepackets associated with spin
up and spin down in the Ŝ1 basis with only the spin up tra-
jectory being labeled for clarity. After being initialized to
a state centered at the origin, the spin-up wave-packet be-
gins its clockwise motion near the point labeled 1. Halfway
through the operation, near the point 2, the phase of the drive
field is advanced by π, changing the direction of the applied
force. At the end of the gate, near point 3, the wave-packet
ends up much closer to the origin than the turning point near
point 2. Therefore, the two wave-packets have more over-
lap at the end of the gate which is the key to achieving a
higher fidelity operation. (b)The Walsh functions W (1, x),
W (3, x) and W (7, x) are shown. Notice that W(3, x) can be
constructed as two sequential W(1, x) functions with a phase
flip on the second pulse. Likewise, W(7, x) can be constructed
as sequential W(3, x) pulses with a phase flip on the second
pulse.

operator in (2) becomes,

D̂k(tg) = e−iX̂N
Ω
2

∫ tg
0 dtW(k,t/tg)(e

−i(δ+∆)t â†+ei(δ+∆)tâ).
(3)

By choosing aWalsh function with index k = 2n−1 where
n is an integer and a detuning δ = 2n+1π/tg, phase flips
only occur at integer multiples of 2π/δ and the effect of
∆ can be suppressed to any order. This statement rests
on the following equality,

∫ 1

0

dxW(2n − 1, x)e±i2n+1πx
n
∑

l=0

alx
l = 0, (4)

where al is a constant, (proof in the supplemental mate-
rial). If the function e±i∆t is expanded in a Taylor series,
the identity in (4) ensures that the displacement opera-
tor D̂2n−1(tg) = Î + O(∆n+1), where Î is the identity
operator.
To demonstrate the power of the composite pulse se-

quence, we use a qubit defined as the clock states in
the S1/2 hyperfine manifold of a Yb+ ion in an RF
Paul trap which can be initialized and read out us-
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FIG. 2. A single ion prepared in |↓〉 and an average excitation
number n̄ ≈ 7 is subjected to the standard and composite
spin-dependent force operations and then measured in the σ̂z

basis. The data shown are plotted together with theoretical
curves assuming an initial thermal state of motion. (a) The
data show the probability of finding the ion in |↑〉 as a function
of the symmetric detuning δ for t0 = 100 µsec. On resonance,
δ = 0, the motional wave-packets quickly become entangled
with the spin state, resulting in a maximally mixed spin state.
For finite δ, the wavepackets trace out circles in phase space
resulting in revivals of the initial spin state when δt0/2π is a
non-zero integer. (b) The spin-dependent force operation is
implemented using W(1, t/t1) for the phase φs(t) with t1 =√
2t0. (c) W(3, t/t3) is used for φs(t) with t3 = 2t0. Note the

narrow resonance at δt3/2π = 2 corresponds to a trajectory
where the phase flips occur when the motional wavepackets
are not at the origin.

ing the techniques described in [26]. These states,
{|F = 0,mF = 0〉 ≡ |↓〉, |F = 1,mF = 0〉 ≡ |↑〉}, have a
splitting of 12.6428 GHz and are coupled to each other
using stimulated Raman transitions. As described in [27],
the Raman transition induced spin-dependent forces are
created by the beat notes between two optical frequency
combs that are generated by a 355nmmode-locked pulsed
laser. The UV pulses have a duration of ∼ 10 psec at a
repetition rate of 80.57 MHz and have a nearly optimal
center wavelength for minimizing off-resonant scattering
from the excited P states in Yb+[29]. At the position
of the ion, the two overlapped beams are cross-polarized
and mutually orthogonal to a magnetic field of 5 G with a
geometry such that the momentum transfer only excites
the transverse modes of motion which have a resonance
frequency of 1.5 MHz. The two Raman beams are fre-
quency shifted with AOMs to set up the appropriate beat
notes in the interference field at the location of the ions.
As in [27], driving one AOM with a single frequency and
the other with two frequencies generates the bichromatic
beat note that gives rise to the MS interaction. The red
and blue phases φr/b are therefore defined by the phases
of these RF drive frequencies. The composite pulse is
implemented by splitting the operation into segments,
between which the phases φr and φb are shifted. In this
setup, symmetric detuning errors are the result of fluc-
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FIG. 3. The state fidelity of a two ion MS gate as a func-
tion of the detuning δ is compared for the first three Walsh
functions being used for φs. In all three data sets, the ions
were sideband cooled to the motional ground state before im-
plementing the gate. In figures (a), (b) and (c) the mea-
sured state fidelity as a function of the detuning δ is com-
pared with the theoretical curves. (d) shows the ideal fidelity
curves for W(0)(blue),W(1)(red),W(3)(green),W(7)(purple)
andW(15)(cyan). The curves are shifted in frequency in order
to facilitate comparison and highlight the increasingly large
regions of high fidelity for the higher order sequences. As a
guide to the eye, the ideal curves shown in (d) are fit to the
data by varying Ω and including an overall scale factor to ac-
count for additional experimental imperfections. The three
different fit values of Ω agree with each other to within 10%.
The estimates for the characteristic widths of the high fidelity
regions, Bk, are shown to increase rapidly with the higher or-
der sequences.

tuating RF trap voltages which manifests itself as noise
on the oscillation frequency.

The effect of Walsh modulation on the spin-dependent
force can be plainly seen with a single ion. In the case
of a single ion, the phase Φ(t) is global and the only
operation that results in a pure spin state is one that
restores the initial spin state. The disentanglement of
the spin and motion and consequential revival of the ini-
tial spin state should occur when δtg/2π = 2nj where
2n − 1 = k is the Walsh function index. If the spin
is initialized to |↓〉 in the σ̂z basis and the joint spin-
motion state after the operation is ρ̂, then the state-
fidelity is F1 = Tr [|↓〉〈↓|ρ̂]. Ignoring heating effects and
assuming an initial thermal state of motion, the fidelity

is F1 = 1
2

(

1 + exp
[

−(n̄+ 1/2) |2αk(tg)|2
])

where n̄ is

the average excitation number of the harmonic oscillator
and αk(tg) =

Ω
2

∫ tg
0 dtW(k, t/tg) e

−i(δ+∆)t. Because the

lowest order term for the infidelity is O(|αk|2), the infi-
delity of the Walsh modulated operation at δtg/2π = 2nj
is O(∆2n+2). This effect is clearly seen in Fig. 2 where
the higher order Walsh sequences exhibit spin revivals of
high purity over a much larger range of detunings in the
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neighborhood of δ = 2π/tg, where the gate is optimized
for speed.

The effect of the Walsh modulation on a two-qubit gate
is more complicated than that of a single qubit operation
since the term in (2) proportional to Ŝ2

N must be taken
into account. The Walsh modulation of φs changes the
evolution of Φ(t) in general, but not in the case where
δ = 2n+1π/tg since the evolution is a series of closed cir-
cles in phase space. In this case, Φ(tg) = Ω2tg/δ and a
fully entangling operation is achieved when Φ(tg) = π/2.
This implies that in order to use W (2n − 1, t/tg), the
gate time must be at least tg = 2n/2π/Ω. While the ex-
ponential nature of this composite gate becomes daunt-
ing for large n, small errors can easily be corrected
with a modest increase in the gate time. In the case
of two ions, the maximally entangling operation ideally
implements the transformation |↓↓〉 ⇒ |↓↓〉 + eiθ|↑↑〉
where the phase θ is determined by the phase of the
drive field. With this target state, the fidelity is F2 =

1/4
∣

∣

∣
e−(n̄+1/2)|2αk(tg)|

2

+ ie−iΩ2Φk(tg)
∣

∣

∣

2

and is measured

in the same manner as described in [27]. The phase

Φk(tg) =
∑k

i>j=0 Im [ϕ∗
iϕj ]− 1

δ

(

tg − 1
δ

∑k
i=0 sin(δti)

)

is

written here in terms of sums over the different parts of a
pulse sequence. The parameters ti refer to the duration
of the (i + 1)th segment of a sequence and the parame-

ters ϕi = (−)i
∫ ti
ti−1

dte−iδt with t−1 = 0 and tk = tg. The

state fidelity measurement for the MS gate [27] is com-
pared for the different pulse sequences in Fig. 3. The
increased robustness to detuning errors can be quanti-
fied by defining a characteristic width of the high fidelity
region, which we refer to as the passband Bk. Since the
smallest infidelity in the data sets is of order 0.1, we
choose to define the passband as the range of detunings
where the infidelity is always observed to be lower than
0.2 and estimate B0 ≈ 0.5 kHz, B1 ≈ 0.7 kHz and B3 ≈
1.5 kHz, demonstrating the composite sequences’ ten-
dency to suppress symmetric detuning errors. The maxi-
mum fidelities observed for the sequences k = {0, 1, 3} are
respectively F2 = {0.91± 0.02, 0.92± 0.02, 0.95± 0.1}.
The relative modest increase in the maximum fidelity
achieved indicates that trapping frequency is not chang-
ing significantly, (1kHz), on a time scale of less than the
time between recalibrations of the detuning δ, which is
approximately 5 min. We observed trap frequency fluc-
tuations of 1 kHz on a time scale of about 1 hour. The
combined effects of state preparation and detection errors
contribute ∼ 2× 10−2 to the infidelity, with the remain-
ing error being dominating by intensity fluctuations due
to beam pointing instabilities.

Walsh functions have long been known by the elec-
trical engineering, astronomy and radio communications
communities to have useful error correcting properties
[25]. While the Walsh functions are not the only op-
tion for choosing how to modulate the drive field of the

spin-dependent force gate, we hope their introduction in
the context of quantum control provides a useful tool for
the further development of dynamical decoupling and re-
lated areas. In the formalism of dynamical decoupling,
the function αk(tg) can be viewed as an optimized filter
function designed to suppress the effects of a noise source
centered at δ/2π [28]. In comparison to the Uhrig se-
quence which is optimal in the number of pulses used for
a given order of noise suppression [18], Walsh modulation
is optimal in the number of elementary sequences, (see
supplemental material for the definition of an elementary
sequence), which allows for both a simple mathematical
construction and simple synthesis using integrated cir-
cuits. It is worth noting that, unlike Walsh filters, the
Uhrig sequence is designed for low frequency noise and
is not an effective filter for noise centered at a finite fre-
quency.

The supression of symmetric detuning errors comes at
the cost of an increase in the gate time for a fixed coupling
strength Ω, meaning that increasingly complex gate se-
quences will eventually perform worse than simpler ones
as the gate becomes sensitive to other noise sources. As
described in [22], some heating effects might also be su-
pressed through the technique described in this Letter,
but the influence of other errors such as fluctuations in Ω
requires further investigation. It is worth noting that the
extra time needed for performing the modulated sequence
might be partially offset by the decreased sensitivity to
the initial temperature of the oscillator thereby reduc-
ing the amount of resource intensive cooling that may be
needed. As quantum information experiments progress,
this technique of coherent error suppression in quantum
bus operations might prove to be an important ingredi-
ent in scaling toward larger systems and more complex
algorithms.
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