
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Shear Viscosity of a Unitary Fermi Gas
Gabriel Wlazłowski, Piotr Magierski, and Joaquín E. Drut
Phys. Rev. Lett. 109, 020406 — Published 12 July 2012

DOI: 10.1103/PhysRevLett.109.020406

http://dx.doi.org/10.1103/PhysRevLett.109.020406


LR13021

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

LA-UR-12-20206
NT@UW-12-04

Shear Viscosity of a Unitary Fermi Gas

Gabriel Wlaz lowski1,2, Piotr Magierski1,2, and Joaqúın E. Drut3
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We present the first ab initio determination of the shear viscosity η of the Unitary Fermi Gas, based
on finite temperature Quantum Monte Carlo calculations and the Kubo linear-response formalism.
We determine the temperature dependence of the shear viscosity to entropy density ratio η/s. The
minimum of η/s appears to be located above the critical temperature for the superfluid-to-normal
phase transition with the most probable value being (η/s)min ≈ 0.2 ~/kB , which is close the Kovtun-
Son-Starinets (KSS) universal value ~/(4πkB).
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The Unitary Fermi Gas (UFG) represents a dilute but
strongly correlated system, where the s-wave scattering
between fermions saturates the unitarity bound for the
cross section σ(k) ≤ 4π/k2 (k being the relative wave
vector of colliding particles). The system is therefore
characterized by the absence of intrinsic scales, making
it universal, i.e. independent of the details of the interac-
tion. On the other hand, the effects of interaction have to
be treated nonperturbatively because of the lack of any
small parameter. The extraordinary progress in experi-
mental methods over the last decade have brought about
the physical realization of such a system in the form of an
ultracold gas of fermionic atoms [1]. As a consequence,
the UFG has provided a new paradigm for many strongly
interacting Fermi systems, attracting attention of theo-
retical physicists in various areas, including string theory,
the quark-gluon plasma, neutron stars, nuclei, and to a
certain extent high-Tc superconductivity [2].

Over the last few years, an impressive effort has been
underway, both experimentally and theoretically, to es-
tablish the physical properties of the UFG and reveal
its strongly correlated nature. One of the most promi-
nent manifestations of such strong correlations is the
observation of nearly ideal hydrodynamic behavior [3–
5]. Studies of the transport properties of these systems
are largely inspired by a conjecture formulated by Kov-
tun, Son, and Starinets (KSS) of the existence of a lower
bound η/s > ~/(4πkB) on the ratio of the shear viscos-
ity η to the entropy density s for any system [6]. As the
bound is saturated for the case of strongly coupled N = 4
supersymmetric Yang-Mills theory, it is expected that
strongly correlated quantum systems are close to this
bound. Indeed, very different physical systems known
to be strongly interacting appear to be very close to the
KSS bound: i) the quark-gluon plasma created in heavy
ion collisions at the RHIC obey η/s 6 0.4~/kB, ii) ul-
tracold atomic gases at unitarity display η/s 6 0.5~/kB,
see [7] and references therein for an extensive overview.
It has also been predicted that low-energy electrons in
graphene monolayers are characterized by a low value of

η/s, of the same order as that of the quark-gluon plasma
and ultracold atomic gases [8].

In general, viscous (non-superfluid) hydrodynamics is
characterized by two viscosity coefficients: the shear vis-
cosity η and the bulk viscosity ζ. Contrary to the quark-
gluon plasma, where the bulk viscosity is non-zero and
can be a significant source of dissipation (especially near
a phase transition), the bulk viscosity of the UFG van-
ishes as a result of scale invariance [9–11]. The UFG is
therefore an excellent candidate for a perfect fluid, de-
fined as the one with the lowest transport coefficients η
and ζ allowed by quantum mechanics.

A large class of theoretical methods has been used to
determine the transport coefficients of the UFG for homo-
geneous and trapped systems [12–20]. Here, the first ab

initio calculation of the shear viscosity of the UFG is pre-
sented within the framework of the Path Integral Monte
Carlo (PIMC) approach [21], which has been successfully
used to compute other properties of the UFG [23–25]. To
our knowledge, this is also the first ab initio calculation of
the viscosity of a system with dynamical fermions, as pre-
vious ab initio calculations have involved the “quenched”
approximation, in which the fermion determinant is set
to unity [26, 27]. The fact that such a fully dynamical
calculation is at all possible is not a priori obvious and
should be regarded as one of our most important results.
While statistical errors are explicitly under control, we
provide only a limited assessment of systematic effects
(finite density and volume). From our results it is clear
that those effects can be controlled. While we focus our
study on the shear viscosity, we have preliminary indi-
cations that the bulk viscosity vanishes at all tempera-
tures, in agreement with the scale invariance arguments
mentioned above. However we defer more careful de-
terminations of both viscosities as well better control of
systematic errors to future work.

Transport coefficients can be theoretically determined
using linear response theory via the Kubo relations
[11, 28]. In order to apply such relations within the
framework of PIMC, we followed the method based on
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the stress-tensor correlators [26, 27, 29]. Within this ap-
proach, the frequency-dependent shear viscosity is given
by (in units such that ~ = kB = m = 1)

η(ω) = π
ρxy,xy(q = 0, ω)

ω
, (1)

while the static viscosity is defined in the limit of zero
frequency: η = limω→0+ η(ω). The spectral density
ρij,kl(q, ω) is related to the imaginary-time (Euclidean)
stress-tensor correlator Gij,kl(q, τ) by inversion of the re-
lation

Gij,kl(q, τ) =

∫

∞

0

ρij,kl(q, ω)
cosh (ω(τ − β/2))

sinh (ωβ/2)
dω,

(2)
where β = 1/T is the inverse temperature. In turn, the
stress-tensor correlator has the form

Gij,kl(q, τ) =

∫

d3re−iq·r〈Π̂ij(r, τ)Π̂kl(0, 0)〉, (3)

where the average is performed over the grand canon-

ical ensemble, Ô(τ) = eτ(Ĥ−µN̂)Ôe−τ(Ĥ−µN̂), Ĥ is the
Hamiltonian of the system, µ is the chemical potential
and N̂ is the particle number operator. The stress-tensor
operator Π̂ij(r) is defined via the operator version of
the Euler equation (summation over doubled index is as-
sumed):

i[ĵk(r), Ĥ] = ∂lΠ̂kl(r), (4)

where ĵk is the current operator. Since the current
operator commutes neither with the kinetic-energy nor
with the potential-energy parts of the Hamiltonian, it
is convenient to split the stress tensor into two parts:

Π̂kl = Π̂
(T )
kl + Π̂

(V )
kl . The kinetic-energy part Π̂

(T )
kl is well

established and is the only contribution to the shear vis-
cosity for a zero-range potential (see for example [15]).

The potential-energy part Π̂
(V )
kl is more complicated, as

defining the diagonal of the stress tensor is not trivial
due to scale invariance, which is violated in our lattice
calculations. Nevertheless, if we proceed with the stress
tensor which on the lattice does not respect the sum rule
∫

d3rΠ̂ii(r) = 2Ĥ imposed by the scale invariance [10],
we obtain results consistent with ζ = 0. This matter is
under further investigation.

Using the PIMC method, the stress-tensor correla-
tor (3) was evaluated at q = 0 for 51 points in imaginary
time τ , uniformly distributed in the interval [0, β] on a
spatial lattice of 83 points. Increasing the number of τ
points did not affect the final results. A statistical ensem-
ble of 5000 uncorrelated samples was generated at each
temperature, thus reducing the statistical errors to a few
percent (depending on the temperature and value of τ).
To estimate the size of discretization errors, exploratory
calculations on a 103 lattice were performed. All the cal-
culations presented here were performed with an average

particle number density n = N/V ≈ 0.09. The system-
atic errors associated with the stress-tensor correlator,
related to finite volume effects as well as effective-range
corrections, are likely ∼ 10 − 15% [21, 22]. For a more
detailed discussion see Ref. [30].

To determine η, one has to solve Eq. (2) numerically,
which is an ill-posed inversion problem, as there exist
an infinite number of solutions which reproduce the cor-
relator within its error bars. Therefore, estimating the
shear viscosity requires additional information. Besides
the non-negativity of the viscosity η(ω) > 0, the sum
rule and the asymptotic tail behavior (see [11] with sub-
sequent corrections [15, 31]) have been used as a priori

information. In the unitary limit these conditions read

1

π

∫

∞

0

dω

[

η(ω) − C

15π
√
ω

]

=
ε

3
, (5)

where C is Tan contact density [32] and ε is the energy
density. The energy density is obtained directly from
PIMC calculations, while the contact density is taken
from Ref. [33]. Based on the results for the noninter-
acting Fermi gas, where ηFG(ω) ∝ δ(ω), and those ob-
tained within the T-matrix approach [15] or kinetic the-
ory [17], the shear viscosity η(ω) is expected to be a
continuous function with Gaussian-like structure at low
frequencies, smoothly evolving into the asymptotic tail

behavior η(ω → ∞) ⋍
C

15π
√
mω

. Moreover, we assume

that there is no sharp structure in the spectral density
in low frequency limit (associated for example with well
defined quasi-particles), which could be overlooked dur-
ing the inversion process. We used these assumptions to
construct the model used in the inversion procedure.

To perform the inversion we applied a methodology
based on two complementary methods: Singular Value
Decomposition (SVD) and Maximum Entropy Method
(MEM), both described in Ref. [34]. Since these methods
are based on completely different approaches, a solution
that is in agreement simultaneously with both of them is
regarded as the most favorable scenario. In order to esti-
mate the stability of the combined methods with respect
to the algorithm parameters, the “bootstrap” strategy
was applied. Namely, about 200 reconstructions were
performed, with randomly generated initial parameters
(within some reasonably chosen interval). The collected
set of samples was subsequently used to evaluate the av-
erage value of the shear viscosity and the standard devi-
ation (see [30] for details).

In Fig. 1, the dimensionless static shear viscosity η/n is
shown as a function of T/εF , where εF = (3π2n)2/3/2m
is the Fermi energy of the noninteracting gas. The shear
viscosity monotonically decreases with decreasing tem-
perature. No drastic suppression of the viscosity below
the critical temperature of the superfluid-normal phase
transition Tc ≃ 0.15εF is observed. However, note that
below Tc the coefficient η describes the viscosity of the
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FIG. 1: (Color online) The dimensionless static shear viscos-
ity η/n as a function of T/εF for an 83 lattice (red) squares
and 103 lattice (blue) circles. The error bars only represent
the stability of the combined (SVD and MEM) inversion pro-
cedure with respect to changes in the algorithm parameters.
The (green) line depicts the prediction of kinetic theory [12].
For comparison, recent results of the T-matrix theory pro-
duced by Enss et al., are plotted as open (purple) circles [15].

normal fluid component only. The results on 83 and 103

lattices exhibit satisfactory agreement. Surprisingly, our
results approach the predictions of kinetic theory already
at T & 0.3εF [12]. Note that the PIMC results are sig-
nificantly below all known results in the vicinity of Tc.

In Fig. 2, the value of the entropy obtained from PIMC
calculations is shown (extracted as in Ref. [21]), together
with the results extracted from the recent high-precision
MIT measurement [35]. For temperatures T > 0.25εF ,
both lattices reproduce experimental data reasonably
well. At low temperatures T < 0.25εF the 83-lattice
results deviate from the measurements, producing sys-
tematically lower values. On the other hand, the 103-
lattice results reproduce correctly the temperature de-
pendence of the entropy, yet slightly overestimating the
experimental values. These discrepancies are attributed
to systematic errors that are known to be present at low
temperatures even for larger lattices [25]. Consequently,
we expect the ratio η/s to be significantly affected by
uncertainties related to the entropy at low temperatures.

In Fig. 3 the ratio η/s is presented as a function of tem-
perature. The PIMC calculations reveal the existence of
a deep and rather narrow minimum in η/s at tempera-
tures around 0.20−0.25εF , which is above Tc. Again, the
ratio η/s is located around the kinetic theory predictions
already at T & 0.3εF [12]. The estimation of the η/s-
ratio reveals (η/s)min ≈ 0.2 as the most probable value
for the minimum. This result is about 2.5 times higher
than the KSS bound η/s > 1/4π ≈ 0.08. Such a low
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FIG. 2: (Color online) Entropy per particle as a function of
T/εF for the 83 lattice in (red) squares and 103 lattice in
(blue) circles. The entropy per particle extracted from the
recent MIT measurement [35] is plotted with (black) crosses.

value has been reported only for pure gluons as a result
of lattice calculations [26, 27].

The minimum value for the ratio (η/s)min ≈ 0.2, is
significantly lower than predictions of all current calcu-
lations, which yield a minimum ≃ 0.5. However, these
methods are in principle unreliable when applied to the
UFG at T ≃ Tc, where the minimum appears. Moreover,
the η/s ratio calculated from PIMC is also significantly
lower than the experimental measurements [3–5], which
also give the value ≃ 0.5. Note, however that these mea-
surements are performed in trapped systems. The trap-
averaged viscosity 〈η/n〉 = 1

N~

∫

η(r) d3r may affect the
determination of the minimum value. To solve this puzzle
one should apply an averaging procedure to the uniform
case results, using e.g. Local Density Approximation. It
is well known that this procedure leads to a divergence
due to the violation of the hydrodynamic description at
the edges of the cloud [36]. To perform a reliable aver-
aging procedure the collisionless edges should be treated
using kinetic theory. This, however, is a hard task that
requires the knowledge of second-order transport coeffi-
cients like the relaxation time, which are currently poorly
known.

Since our main result for the minimal value if η/s is
significantly lower than other predictions as well as ex-
perimental results, we have performed exploratory cal-
culations to estimate the size of systematic effects. We
have checked the stability of the inversion procedure with
respect to the default model as well the impact of the
non-zero value of the effective range, see [30] for details.
Our conservative estimation indicates that the minimal
value of the η/s-ratio is lower than 0.45.

In summary, we have presented the first attempt to
determine the shear viscosity of the UFG through an ab

initio PIMC approach. The minimum value of the η/s
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FIG. 3: (Color online) Ratio of the shear viscosity to en-
tropy density η/s as a function of T/εF for an 83 lattice (red)
squares and 103 lattice (blue) circles. The error bars only
represent the stability of the combined (SVD and MEM) in-
version procedure with respect to the change of algorithm pa-
rameters, and do not include systematic errors of the entropy
determination. Results of the T-matrix theory are plotted
by open (purple) circles [15]. In the high and low tempera-
ture regimes, known asymptotics are depicted: for T > 0.3εF
the prediction of kinetic theory [12] as a green line, and for
T < 0.2εF the contribution from phonon excitations [13] as a
brown line. The KSS bound appears as a dashed black line.

ratio was estimated to be lower than 0.45 with the most
probable value being (η/s)min ≈ 0.2, located around T ≈
0.20− 0.25εF . This value is close to the KSS bound and
suggests that the unitary Fermi gas is the best candidate
for the perfect fluid. As our results can be significantly
affected by systematic errors, further and more precise
investigations are called for.
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