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We experimentally and theoretically study the coincidence count rate for down-converted x-ray
photons. Because of photoionization, parametric down-conversion at x-ray wavelengths generally
involves loss and the theoretical description requires a Langevin approach. By working in a trans-
mission geometry (Laue) rather than in the Bragg geometry of previous experiments we obtain an
improvement in the signal to noise ratio of 12.5, and find agreement between experiment and theory.
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For decades parametric down-conversion (PDC) has
been widely used as a source for generating entangled
photons in the infrared and visible spectral regimes, and
has resulted in remarkable insights into many quantum
phenomena [1]. The extension of PDC to the x-ray
regime was proposed by Freund [2] and demonstrated
with a hard-x-ray tube by Eisenberger forty years ago
[3]. The essence of these early papers was the realiza-
tion that though the plasma-like nonlinearity at x-ray
wavelengths is much smaller than visible nonlinearities,
the number of driving k-space modes is vastly larger. In
recent years the use of synchrotrons has allowed consid-
erable experimental progress [4], and recent experiments
have opened the possibility for investigating the optical
response of chemical bonds by PDC from the x-ray to
the x-ray and UV range [5–7] . New theoretical results
suggest a method for generating Bell states at x-ray wave-
lengths [8], thereby allowing the possibility of the use of
high efficiency photon number state resolving detectors.

This Letter describes a substantial difference between
PDC as observed in the visible and at x-ray wavelengths.
This difference is the result of the inherent loss due to
photoionization at the generated x-ray wavelengths, as
compared to the near zero loss at generated optical and
infrared wavelengths. For example, the absorption co-
efficient of diamond at 4 keV is 132.6 cm−1 and at 9
keV is 10.2 cm−1. Theories [9, 10] that are correct when
there is no loss are incorrect in the presence of loss. In
the Heisenberg picture, without loss, vacuum fields at
the signal and idler at the crystal input act as the driver
for the down-conversion process. In the presence of loss
these vacuum fields decay and a non-Langevin theory
predicts that the parametric fluorescence exponentially
approaches zero as the crystal length becomes many de-
cay lengths long. This shortcoming is removed by the
inclusion of appropriate Langevin terms in the Heisen-
berg equation. In this picture the loss process at the
signal or idler is inherently tied to fluctuation, and these
fluctuations are the driver for the down-conversion pro-
cess. This is far more than a technical correction: with
the Langevin fluctuations included, the signal and idler
count rates, as well as the coincidence count rate, for a

sufficiently long crystal, depend on the absorption length
but not on the crystal length.

The previous theory of x-ray PDC [2] relies on the
early work of Kleinman [10]. It describes the count rate
of a single detector measuring one of the paired photons,
while all experimental x-ray down-conversion papers have
described coincidence count rates. In the presence of loss,
the coincidence count rate is substantially lower than the
single photon count rate. For example, our calculations
show that when the pump photon energy is 18 keV, and
the photon energy of the signal and the idler photons is
9 keV, the signal/idler count rate is 6.3 times larger than
the coincidence count rate . When the photon energy of
the signal is 13.5 keV, the signal count rate is higher than
the coincidence count rate by a factor of 171.4.

At x-ray wavelengths Compton scattering of the pump-
ing beam is significantly stronger than the down con-
verted signal. Detection is therefore done by coincidence
counting of the signal and idler photons. Typically, the
main noise source is simultaneous Compton counts at the
two detectors, and the noise is proportional to the square
of the Compton scattering rate and to the square of the
path length that the pump travels in the nonlinear crys-
tal. The theory described here shows that only the last
absorption length of the generating crystal contributes to
the parametric coincidence count rate and any portion of
the crystal longer than the absorption length contributes
only to the background noise. The absorption length at
4.5 keV, which is the lowest photon energy we measure,
is 0.108 mm. Our crystal length is 0.48 mm, and the
optical path inside the crystal is 0.5 mm and 1.77 mm in
transmission and reflection geometries respectively. By
working in the transmission geometry, and not in reflec-
tion as in previous experiments, we obtain a ∼ 12.5 im-
provement in the signal-to-noise ratio.

The Langevin method is a standard method to describe
quantum systems that exhibit loss [11, 12]. Several au-
thors have considered the effect of cavity output coupling
and included the effect of Langevin terms on PDC [13–
17]. The Langevin method has also been used to describe
the generation of paired photons by electromagnetically
induced transparency [18–22].
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FIG. 1: (a) Schematic of the experiment. (b) Phase matching

diagram. ~ks, ~ki, and ~kp are the wave vectors of the signal,

idler, and pump fields. ~G is the reciprocal lattice vector or-
thogonal to the (220) atomic planes.

A typical phase matching diagram for x-ray PDC is
shown in Fig. 1. We denote the signal, idler, and pump
wave-vectors respectively as ~ks, ~ki, and ~kp. ~G denotes
the reciprocal lattice vector. The phase matching condi-
tion is ~ks +~ki = ~kp + ~G. We use the (220) atomic planes
with the lattice k vectors in the direction of the x-axis.
We develop the theory in the Heisenberg picture and de-
fine the transverse wave-vector qj = (kjx, kjy), where
kjx and kjy are the wave-vector components parallel to
the surfaces of the crystal. The output of the gener-
ator crystal is described by frequency domain operators
as(z = L,qs, ωs) and ai(z = L,qi, ωi), with wp = ws+wi

and qp +G = qs + qi. We consider a plane monochro-
matic pump at wp propagating at an angle θp with re-
gard to the z-axis in the x-z plane. The time-space signal
and idler operators are related to their frequency domain
counterparts by

as(z, r, t) =

∫ ∞

0

∫ ∞

−∞
as(z,q, ω) exp

[

− i(q · r− ωt)
]

dqdω

ai(z, r, t) =

∫ ∞

0

∫ ∞

−∞
ai(z,q, ω) exp

[

− i(q · r− ωt)
]

dqdω,

where r = (x, y), with commutators,

[

aj(z1,q1, ω1), a
†
k(z2,q2, ω2)

]

=

1

(2π)3
δj,kδ(z1 − z2)δ(q1 − q2)δ(ω1 − ω2). (1)

The operators a(z,q, ω) are the coarse grained annihi-
lation operators of a photon in a specific mode. These op-
erators are normalized so that the signal and idler count
rate is Rs = 〈a†s(r, t)as(r, t)〉 and Ri = 〈a†i (r, t)ai(r, t)〉

respectively. The factor δj,k is included in the commuta-
tor to account for the polarization property: When the
pump polarization is normal to the scattering plane the
polarization of the signal must be normal to the idler
polarization [8].
We assume the slowly varying envelope equations by

superposition of two physical effects, parametric down-
conversion, and propagation in a lossy medium [12].

∂as
∂z

+
αs

cos θs
as = κ′a†i exp[i∆kzz] +

√

2αs

cos θs
fs,

∂a†i
∂z

+
αi

cos θi
a†i = κ′∗as exp[−i∆kzz] +

√

2αi

cos θs
f †
i . (2)

The quantity ∆kz = kp cos θp − ks cos θs − ki cos θi is the
phase mismatch in the direction normal to the diamond
boundaries (along the z axis), where kj = ωjn(ωj)/c.
The boundary conditions impose exact phase matching
in the x and y directions. In Eq. (2), θs and θi are the
angles of the idler and the signal with respect to the sur-
face normal and are found by solving the phase matching
equations at the given pump angle and signal photon en-
ergy. The absorption coefficients as a function of the
wavelength are αs and αi. κ′ = iκ√

cos θs cos θi
where κ is

the nonlinear coupling coefficient. The fs(z,q, ω) and

f †
i (z,q, ω) are the Langevin noise operators, and satisfy

[

fj(z,q, ω), f
†
k(z

′,q′, ω′)
]

=

1

(2π)3
δj,kδ(z − z′)δ(q− q′)δ(ω − ω′). (3)

We solve Eq. (2) for the output operators as(L,q, ω)

and a†i (L,q, ω). These operators are expressed in terms
of the vacuum fields at the input of the nonlinear gen-
erating crystal, as(0,q, ω) and a†i (0,q, ω), integrals over
the Langevin terms, and coefficients that depend on the
signal frequency ωs and the signal transverse k vector
~qs. When loss is negligible, the contribution from the
Langevin terms is negligible and the output operators
can be written as a unitary transformation of the bound-
ary operators. In this case, the commutators [Eq. (1)]
are conserved at all z without the Langevin terms. We
have shown numerically that when the loss cannot be ig-
nored, the commutators are conserved at all z only when
the Langevin terms are retained.
The coincidence count rate is

Rc = A

∫ ∫

G(u, τ)dudτ,

where

G(u, τ) = 〈a†i (r2, t2)a
†
s(r1, t1)as(r1, t1)ai(r2, t2)〉. (4)

Here A is the area of the pump at the input of the
nonlinear crystal, u = r2 − r1 and τ = t2 − t1.
The experiment described here was run at Beam-line

10-2 of SSRL. Fig. 1(a) depicts the experimental setup.
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TABLE I: Angles of the detectors D1 and D2 with regard
to the pumping beam. The pump is at an angle of 15.8853
degrees with regard to the surface normal; ωs and ωs0 are the
signal photon frequency and the degenerate photon frequency,
respectively. Angles are in degrees.

ωs/ωs0 D1 D2
1 30.2837 33.104
1.1 30.4198 33.2804
1.2 30.5457 33.4493
1.3 30.6642 33.644
1.4 30.778 33.8753
1.5 30.8895 34.1604

The pump beam with a photon energy of 18 keV im-
pinges on a diamond crystal. The pump flux was 2×1011

photons/s. The crystal length is 0.48 mm and the spot
size at the sample was 1.2×10−7 m2. The polarization of
the pump is normal to the scattering plane. The idler and
signal beams are detected on two separate detectors with
variable apertures D1 and D2. A helium bag between the
output of the diamond and the slits of the detectors re-
duced the loss due to air absorption. The angle of the
surface normal of the diamond crystal relative to the k
vector of the pump beam is 15.8853 degrees. The various
angles of the detectors relative to the pump pointing are
given in Table I. To determine the coincidence count rate,
we scan through the recorded data and count events that
satisfy the following conditions: (1) the photon energy at
detector D2 is within a certain energy acceptance window
and (2) both detectors record a count within a time win-
dow smaller than the electronic response time. In order
to build energy histograms, we constrain the counts at
detector D2 to be in a fixed energy window, and we do
not constrain the photon energies at detector D1.

Typical energy histograms of the coincidence count
rate generated via the PDC process are shown in Fig. 2.
Here, panels (a) and (b) correspond to detector angles
satisfying off-degeneracy phase matching energy ratios
of ωs/ωs0 = 1.2 and ωs/ωs0 = 1.3, respectively.
Both theory and the experimental results of Fig. 2

show that the energy of the down converted photons cor-
respond to a particular emission angle. This one-to-one
relation between photon energy and the emission angle is
determined by phase matching. Theory also predicts that
the total width of the angular distribution of the photon
pairs emerging from the crystal is larger than that of the
apertures of the detectors. Therefore, the width of the
observed energy distribution is limited by the angular
acceptance of the detector apertures.

The measured coincidence count rate depends on the
choice of the energy window for detector D2 and on the
aperture sizes of both D1 and D2. For equal angular ac-
ceptances, we plot the energy histograms similar to Fig. 2
for an energy window from 0.1 keV to 1.3 keV. We repeat
this for each of the detector angles in Table I. We sum

FIG. 2: Energy histograms of the coincidence count rate at
(a) ωs/ωs0 = 1.2 off of degeneracy and (b) ωs/ωs0 = 1.3 off of
degeneracy. Parts (a1) and (b1) are the energy histograms of
detector D1. Parts (a2) and (b2) are the energy histograms of
detector D2. The events displayed satisfy the conditions: (1)
The photon energy at D2 is within an energy window of 0.8
keV in part (a2) and 0.6 keV in part (b2). (2) Both detectors
”click” within a time window which is smaller than the system
response time. The photon energy of the pump is 18 keV

over the D1 counts and scale for detector efficiencies and
propagation losses (helium bag and the air gap between
the slits and the detectors). We repeat this procedure
for unequal angular acceptances (a ratio of 3.6 between
solid angles of the detectors; see supplemental material )
case for an energy window from 0.1 keV to 1 keV. Fig. 3
shows the total coincidence count rate as a function of
the energy window. The first row shows the degeneracy
phase-matching case ωs/ωs0 = 1, the second row the off-
degeneracy case ωs/ωs0 = 1.3. The first column shows
the equal angular acceptance case (Ω1 = Ω2), while the
second column shows the Ω1 = 3.6 · Ω2 case.

Figure 4 shows total coincidence count rate as a func-
tion of the deviation from the degenerate frequency. In
part (a) the aperture sizes are equal and in part (b) the
aperture size of detector D1 is larger than the aperture
size of detector D2 by a factor of 3.6. The theoretical
curve is scaled vertically by a common factor of 0.43. As
we see from Fig. 4, the theoretical curves and the exper-
imental results are in reasonable agreement.

The maximum generated pair rate at the degenerate
frequency is one photon pair per 40 seconds. This ob-
served count rate together with the theoretical calcula-
tion of the nonlinearity for signal polarization in and out
of the scattering plane, yield (κL)2 = 5×10−25 for either
polarization.

In summary, we have described the measurement of the
coincidence count rates of photon pairs generated via x-
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FIG. 3: Coincidence count rate vs. energy window at (a),(c)
at degeneracy and (b),(d) at ωs/ωs0 = 1.3. In parts (a) and
(b) the aperture sizes are equal. In parts (b) and (d) the
aperture size ratio is 3.6. Each of the points is a sum over
the corresponding coincidence histogram as shown in Fig. 2.
The solid blue curves are plotted from theory. The theoretical
curves are scaled vertically by a factor of 0.43.

C
o
u
n
t 
ra
te
 (
s
-1
) 

s

s0

ω

ω

(a) (b) 

s

s0

ω

ω

FIG. 4: Coincidence count rate as a function of ωs/ωs0 . The
solid blue curves are plotted from theory. The theoretical
curves are scaled vertically by a factor of 0.43. (a) Aperture
sizes are equal. (b) The aperture size ratio is 3.6.

ray PDC on, and off, of degeneracy. These measurements
were possible due to the improvement in the signal-to-
noise ratio achieved by working in the transmission ge-
ometry. We have described the theory of coincidence
count rate in the presence of loss and showed that the
Langevin terms are essential. The Heisenberg-Langevin
equation (Eq. (2) ) is based on the fluctuation-dissipation
theorem with the assumption of a Markovian reservoir.
Microscopically, to the extent that the loss is dominated
by photoionization, the fluctuation may be viewed as re-
sulting from (virtual) two body recombination. If there
is loss but no parametric coupling, then two body recom-
bination does not result in photon generation at either
the signal or the idler. But in the presence of paramet-
ric coupling, recombination at the idler causes generation
of signal photons, and recombination at the idler causes
generation of signal photons.
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