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Abstract

In this brief note, we consider the variation of the entanglement entropy of a region as the shape

of the entangling surface is changed. We show that the variation satisfies a Wess-Zumino like

integrability condition in field theories which can be consistently coupled to gravity. In this case

the ”anomaly” is localized on the entangling surface. The solution of the integrability condition

should give all the nontrivial finite local terms which can appear in the variation of the entanglement

entropy. The answers depend on the intrinsic and extrinsic geometry of the entangling surface but

the form does not depend on the details of the field theory. The coefficients which multiply the

purely geometric contributions will depend on the particular details of the field theory.
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INTRODUCTION

Recently much attention has been paid to the computation of Entanglement Entropy

in quantum field theories. Entanglement entropy of any quantum system is defined in the

following way. Given any system we divide it into two subsystems denoted by A and B. If we

assume that the observables which describe subsystem A and subsystem B, commute among

themselves then the total Hilbert space of the system can be written as the tensor product of

the individual Hilbert spaces of subsystems A and B, H = HA ⊗HB. Let us further assume

that the total system is described by a density matrix ρ. We can define a reduced density

matrix for the subsystem A denoted by ρA as ρA = TrHB
ρ. The entanglement entropy of

the subsystem A can be defined as the von Neumann entropy of the reduced density matrix

ρA,

SEE(A) = −TrHA
ρAlnρA (1)

Entanglement entropy of the subsystem B can also be defined in the same way. Direct

evaluation of the entanglement entropy in field theories is complicated due to the presence

of the factor lnρ. One can apply the replica trick to compute the trace but in practice this

can be done only for the simplest field theories or theories with very high degree of symmetry.

For example, the entanglement entropy is known exactly in 1+1 dimensional conformal field

theories when the subsystems are a line segment and its complement [2, 3, 6]. It can also

be calculated exactly in field theories which have a holographic dual description [8–15]. For

applications to the black hole physics please see [16–20]. [21] also discusses some universal

geometric terms in the entanglement entropy in O(N) vector model near a quantum critical

point.

In this brief note we would like to point out that the entanglement entropy in diffeo-

morphism invariant field theories1 have to satisfy quite strong constraints. One can derive

these constraints in the same way as Ward identities are derived in field theory. The only

difference is that in this case the path integral is over field configurations which satisfy

nontrivial boundary condition and as a result the final answer is similar to an ”anomalous

Ward identity”. In particular, it has to satisfy a Wess-Zumino like consistency condition

1 By this we mean that the field theory has a conserved stress-energy tensor and so can be consistently

coupled to gravity.
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[7].The reason is that when we compute the entanglement entropy using the replica trick

we essentially compute a path integral over a specific set of field configurations which are

chosen in such a way that the entangling surface plays a distinguished role. As a result

the underlying diffeomorphism invariance of the field theory is broken by the choice of the

entangling surface. By this we mean the following. The partition function or the quantum

effective action of the field theory is invariant under the substitution: g → f ∗g, where g

is the space-time metric, f is the diffeomorphism acting on the underlying space-time and

f ∗g is the pulled-back metric. But the entanglement entropy is not invariant under the sub-

stitution, because the diffeomorphism also changes the shape of the entangling surface. So

the group of diffeomorphisms acts nontrivially on the entanglement entropy. In particular it

has to transform in such a way that the algebra of diffeomorphism is satisfied and this will

impose some constraints on the possible forms of the entanglement entropy.

ENTANGLEMENT ENTROPY

Let us take the background geometry to be of the form R1 ×Mn+1 where R1 is the time

direction and Mn+1 is the spatial section. We divide Mn+1 into two regions, A and B, by

introducing a codimension one hypersurface Σ in Mn+1. We are interested in computing the

entanglement entropy of the region A. We shall refer to the points belonging to A as points

inside Σ.

Now we apply a spatial diffeomorphism, f , to the background geometry. The background

metric is of the form:

ds2 = gµνdx
µdxν = −dt2 + γij(x)dx

idxj (2)

where t is the time coordinate and γij is the time independent positive definite spatial

metric on the constant time slices, Mn+1. Since f is purely spatial it acts only on the

spatial metric γij and its action does not depend on the choice of the time slice. In general

the diffeomorphism maps the regions A and B to some other regions f(A) and f(B). The

boundary Σ between A and B gets mapped to f(Σ) which is again the boundary between

f(A) and f(B). We shall assume that the diffeomorphism is continuously connected
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to the identity and hence can be thought of as generated by some vector field. 2 As

a result of this the diffeomorphism never carries any point of region A or B across the

boundary Σ. In short, reflections across the boundary Σ are not allowed and orientation

is preserved by the diffeomorphism. This together with the fact that the diffeomorphism

is time independent has the following interesting consequence. If Φ is a field configuration

contributing to the path integral which computes the entanglement entropy of the region

A, then (f−1)∗Φ is another field configuration which contributes to the path integral

which computes the entanglement entropy of the region f(A). In fact this leads to the

identity SE(f(A), g) = SE(A, f
∗g), which is nothing but a Ward identity satisfied by the

entanglement entropy. In this equation g is the background metric and f ∗g denotes the

pull-back of the background metric by the diffeomorphism f . SE(A, g) is the entanglement

entropy of the region A with the background metric g. If ξ is the vector field which

generates the diffeomorphism then (f ∗g)µν = gµν +∇µξν +∇νξµ. In our setting the vector

field ξ is time independent. In the following section we shall give a heuristic derivation of

the above relation.

We start with the definition of the entanglement entropy of region A,

SA = −TrHA
ρAlnρA = − lim

n→1

∂

∂n
TrHA

ρA
n (3)

In practice the trace over the reduced density matrix ρA cannot be calculated for arbitrary n

and so one computes it for integer values of n and then analytically continue it to arbitrary

values of n. But it should be mentioned that the existence and uniqueness of a proper

analytic continuation cannot always be proved. So let us study the quantity TrHA
ρA

n for

integer values of n using path integral.

The matrix element of the reduced density matrix ρA is defined as,

ρA(φA, φ
′

A)|g = TrHB
ρ|g =

∫
DgφB < φA, φB|ρ|φ′

A, φB >g (4)

In equation-(2.3), φ denotes all the fields in the theory. We have decomposed the field eigen-

state |φ > on the spatial section Mn+1 as |φ >= |φA > ⊗|φB > and DgφB is the integration

2 According to our assumption the components of the vector field do not depend on the time coordinate t

in any coordinate system in which the metric takes the above form.
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measure over the field configurations φB. We have also introduced the background metric

g on Mn+1 and all the integration measures depend on it. Using the above definition-(2.3),

we can write,

TrHA
ρA

2|g =
∫

DgφADgφ
′

A ρA(φA, φ
′

A)ρA(φ
′

A, φA) (5)

=

∫
DgφADgφ

′

ADgφBDgφ
′

B < φA, φB|ρ|φ′

A, φB >g< φ′

A, φ
′

B|ρ|φA, φ
′

B >g

Now the density matrix of the system is given by, ρ = e−βH

Z
, where β is the inverse tem-

perature, H is the Hamiltonian and Z is the canonical partition function of the system at

temperature β−1. We can write matrix elements as,

< φA, φB|ρ|φ′

A, φB >g =
1

Z

∫ φ(β)=(φA,φB)

φ(0)=(φ′

A
,φB)

Dgφ e−S(φ,g) (6)

where S is the Euclidean action of the field theory. Now we make a change of variable in

the path integral, φ → φ̃ (= (f−1)∗φ),

< φA, φB|ρ|φ′

A, φB >g =
1

Z

∫ φ̃(β)=(φA,φB)

φ̃(0)=(φ′

A
,φB)

Dgφ̃ e−S(φ̃,g) (7)

=
1

Z

∫ (f−1)∗φ(β)=(φA,φB)

(f−1)∗φ(0)=(φ′

A
,φB)

Dg(f
−1)∗φ e−S((f−1)∗φ,g)

=
1

Z

∫ φ(β)=(f∗φA,f∗φB)

φ(0)=(f∗φ′

A
,f∗φB)

Df∗gφ e−S(φ,f∗g)

where f is a diffeomorphism which acts only on the spatial section Mn+1 and is time inde-

pendent. In equation-(2.6), we have used the diffeomorphism invariance of the action and

the path integral measure.3 We can write this as an identity,

< φA, φB|ρ|φ′

A, φB >g = < f ∗φA, f
∗φB|ρ|f ∗φ′

A, f
∗φB >f∗g (8)

where we have used the fact that the partition function Z is diffeomorphism invariant.

3 The diffeomorphism invariance of the path integral measure and the action is equivalent to the conserva-

tion of stress energy tensor in the quantum theory. To be more precise, the effective actionW [g] = −lnZ[g]

satisfies the relation W [f∗g] = W [g] in a diffeomorphism invariant theory. Here Z[g] is the partition func-

tion of the theory coupled to the background metric g. Now this is a Ward identity and the infinitesimal

form of this is the law of conservation of the stress tensor. Since diffeomorphism invariance and conserva-

tion of energy-momentum tensor are synonymous and our derivation uses diffeomorphism invariance, the

derivation is invalid if stress-energy tensor is not conserved in the quantum theory.

5



Substituting this identity into equation-(2.4) we get,

TrHA
ρA

2|g =
∫

DgφADgφ
′

ADgφBDgφ
′

B < f ∗φA, f
∗φB|ρ|f ∗φ′

A, f
∗φB >f∗g

× < f ∗φ′

A, f
∗φ′

B|ρ|f ∗φA, f
∗φ′

B >f∗g

(9)

Now we use the diffeomorphism invariance of the measure and write,

TrHA
ρA

2|g =
∫

Df∗gf
∗φADf∗gf

∗φ′

ADf∗gf
∗φBDf∗gf

∗φ′

B < f ∗φA, f
∗φB|ρ|f ∗φ′

A, f
∗φB >f∗g

× < f ∗φ′

A, f
∗φ′

B|ρ|f ∗φA, f
∗φ′

B >f∗g

= TrH
f−1(A)

ρf−1(A)
2|f∗g

(10)

Equation-(2.9) follows from the facts that f ∗φA and f ∗φB are field configuration on the

regions f−1(A) and f−1(B) respectively and we are integrating over them with f held fixed.

It is clear from the above derivation that this is true for any integer n and so it is a reasonable

assumption that this relation still holds after analytic continuation. So differentiating this

relation with respect to n we get,

SE(A, g) = SE(f
−1(A), f ∗g) (11)

or

SE(f(A), g) = SE(A, f
∗g) (12)

Although we have derived the relation-(2.11) under certain assumptions, our claim is that

this will hold even in those cases where these assumptions are not valid. In other words,

we claim that in any diffeomorphism invariant field theory, the entanglement entropy will

satisfy the relation SE(f(A), g) = SE(A, f
∗g), where f is any time-independent spatial dif-

feomorphism which is continuously connected to the identity, i.e, generated by some smooth

vector field. This is a non-trivial Ward identity satisfied by the entanglement entropy in

any diffeomorphism invariant field theory. This relation may still be valid for arbitrary

diffeomorphism transformations but it certainly does not follow from the above logic.

It also follows from the above equality that the change in the entanglement entropy when

the shape of the region is deformed is captured completely by the stress-tensor of the theory.

We showed that changing the shape of the entangling surface is equivalent to changing the

background metric keeping the shape of the entangling surface fixed. But the response
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to a change in the background metric is captured by the stress tensor of the theory. So

the change in the entanglement entropy is universal in the sense that it is determined by

correlation functions with stress tensor insertions. This is one of the main results of this

paper.

Now we can expand the entanglement entropy as :

SE(f(A), g) = SE(A, f
∗g) = SE(A, g) +

∫
dn+1x

√
gδgµν

1√
g

δSE

δgµν
(13)

If we use the formula, δgµν = ∇µξν +∇νξµ, for the change in the metric we get:

SE(f(A), g) = SE(A, f
∗g) = SE(A, g) +

∫
dn+1x

√
gξµ∇ν(−

2√
g

δSE

δgµν
) (14)

It is easy to show by studying diffeomorphisms for which f(A) = A, that the integrand

has a delta function support on the entangling surface. It is not necessary for f to keep

A point-wise fixed. In other words the diffeomorphism has to be such that the vector field

which generates this has to either vanish on the boundary of A or should be tangential to

the boundary at every point. This is equivalent to the condition f(A) = A. So we can write

,

∇ν(
−2√
g

δSE

δgµν
) = FnµδΣ (15)

where nµ is the unit outward normal to the surface Σ and δΣ is the delta function supported

on the surface Σ4.As a result we can write,

δξSE(A, g) = SE(A, f
∗g)− SE(A, g) =

∫
Σ

Fξµnµ (16)

The right hand side of eqn-(2.14) could contain derivatives of the delta function of the form

nµ∇µδΣ, but they can be eliminated by the following argument. If it contains derivatives of

the delta function then the change in the entanglement entropy under a deformation of the

entangling surface will contain a term proportional to nµ∇µξν evaluated on the surface Σ.

Now we can choose ξ such that it is vanishing along the surface Σ but has a nonzero normal

derivative along Σ. In that case f(A) = A and using eqn-(2.13) we get an equation of the

form, ∫
dnx

√
hF ′nµnν∇νξµ = 0 (17)

4 δΣ is defined the following integral identity:
∫
M

√
gfδΣ =

∫
Σ

√
hfΣ where M is the space-time, Σ is a

codimension one hypersurface, f is a scalar function, g is the background metric ,h is the induced metric

on the surface Σ and fΣ is the scalar function f evaluated on the surface Σ.
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This has to be satisfied for all ξ which vanish on the surface Σ. But we can choose the

normal derivative of ξ on the surface arbitrarily even if we keep ξ fixed on the surface. So

the only way this can vanish is if F ′ = 0. So we do not need any derivative of delta function

on the right hand side.The fact that the R.H.S is proportional to the normal vector,follows

from the invariance of the entanglement entropy under the reparametrization of the surface

Σ. F is some scalar function constructed out of the metric , the normal vector field and

their derivatives.

If we are computing the entanglement entropy in a pure state then we must have

SE(A, g) = SE(B, g). This requires that the function F should be odd under the change

nµ → −nµ where nµ is unit normal to the entangling surface. We follow the convention that

the unit normal points in the direction away from the region for which we are computing

the entanglement entropy.

We can see that even eqn-(2.15) is strong enough to rule out many possible terms in

the entanglement entropy. For example consider a term in the expression for the entangle-

ment entropy which can be written as an integral over the entangling surface. If we evaluate

the left hand side of eqn-(2.15) on this term then generically this will produce terms contain-

ing normal derivatives of the vector field on the surface Σ and this cannot be integrated out

because we have a surface integral. If this is the case then that term alone cannot appear

in the entanglement entropy. So we can either drop that term or if possible add some other

terms to the entanglement entropy which will cancel the derivatives of the delta function.

It is easy to show that the Area of the surface Σ is a consistent solution of this equation.

For the surface area contribution, F = KΣ, where KΣ is the trace of the extrinsic curvature

of Σ. We would like to emphasize that we have not proved the area law. We have shown

that in any diffeomorphism invariant field theory area-law is one of the consistent solutions.5

5 This equation is very similar to the loop equation for wilson loops. One can show that the area law in

the confining phase is a consistent solution of the loop equation, but it is difficult to show that the string

tension vanishes if there is no confinement, just from the loop equation.
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WESS-ZUMINO LIKE INTEGRABILITY CONDITION

In the previous sections we have studied entanglement entropy in arbitrary field theory.

We have written down the variation of the entanglement entropy in terms of some unknown

functions. But is there any way to determine them? Entanglement entropy or more precisely

the function F has to satisfy an integrability condition. Eqn-(2.15) gives the change of

entanglement entropy under a diffeomorphism. But given two regions there exist in general

more than one (infinitely many) diffeomorphisms connecting them and all of them should

give the same change in entanglement entropy. This is equivalent to the condition that the

algebra of diffeomorphism has to be obeyed. It leads to the following condition,

[δξ1 , δξ2 ]SE = δ[ξ2,ξ1]SE (18)

The vector fields in the commutator appear in the reverse order because we are considering

active diffeomorphism. One can write eqn-(3.1) in terms of the function F as

δξ1Q(ξ2, F )− δξ2Q(ξ1, F ) = Q([ξ2, ξ1], F ) (19)

where Q is the integral

Q(ξ, F ) =

∫
Σ

dnx
√
h nµξ

µF (20)

Here h is the induced metric on the entangling surface Σ. This is our main result. We have

checked that F = KΣ which comes from the area term in the entanglement entropy satisfies

this integrability condition. It is easy to check that any arbitrary function F will not satisfy

this integrability condition. So this condition is nontrivial.

Comments on The Solution of The Integrability Condition

We hope that the integrability condition we have stated above will be solvable in the

same way as the Wess-Zumino consistency condition. But the difference with the standard

anomaly answer is clearly visible here. In our case the ”anomaly” is localized on a finite

codimension (entangling) surface. Also in the case of anomaly in field theory, the gauge

variation of the quantum effective action is always local and finite. But in this case it is not

clear if the function F is always local. In general it will contain both local and non-local

terms. Also the entanglement entropy is an ultraviolet divergent quantity. If we assume
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that the field theory has been regularized in such a way that diffeomorphism invariance is

respected, then this should not cause any problem. The interesting point is that one can

determine the structure of the local terms in F by solving the consistency condition. There

will be two kinds of solutions. The trivial solutions will be those which can be obtained

by applying a diffeomorphism to the integral of a local function. The integral can be a

surface integral on Σ or a volume integral defined on the region bounded by Σ. But the

interesting solutions are those which cannot be obtained in this way and presumably there

is only a finite number of solutions with this property6. In other words, the nontrivial

solutions of the integrability condition define the nontrivial local terms which can appear in

the variation of the entanglement entropy. In many cases the variation of the entanglement

entropy is more well defined than the entanglement entropy itself because the ultraviolet

cutoff may cancel in the variation. The solution of the integrability condition we have

stated above will give the nontrivial local terms which can appear in the variation. It is

important to note that in order to solve this integrability condition one does not need to

know about the field theory, except that the specific numerical coefficients multiplying the

purely geometric expressions will depend on the theory. It may happen that some of the

local contributions in F are actually protected. This may provide us with some examples

of protected quantities in non-supersymmetric field theory. The other point is that this

method does not require introduction of a background geometry with conical defect and so

the calculation is under control at every stage.
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