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We present solid evidence for the existence of a well-defined Higgs amplitude mode in two-
dimensional relativistic field theories based on analytically continued results from quantum Monte
Carlo simulations of the Bose-Hubbard model in the vicinity of the superfluid-Mott insulator quan-
tum critical point, featuring emergent particle-hole symmetry and Lorentz-invariance. The Higgs
boson, seen as a well-defined low-frequency resonance in the spectral density, is quickly pushed to
high energies in the superfluid phase and disappears by merging with the broad secondary peak
at the characteristic interaction scale. Simulations of a trapped system of ultra-cold 87Rb atoms
demonstrate that the low-frequency resonance is lost for typical experimental parameters, while the
characteristic frequency for the onset of strong response is preserved.
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The emergence of low-energy excitations in systems
with spontaneously broken symmetry is one of the most
fascinating and fundamental subjects in physics relevant
for understanding such diverse systems as solids, mag-
nets, ultra-cold atoms, and relativistic fields. The gener-
ation of mass by the Anderson-Higgs mechanism [1, 2] is
particularly important for the Standard model [3], where
detection of the Higgs boson is still the missing link in
revealing this mechanism, as well as for numerous super-
fluid/superconducting condensed-matter systems. In re-
alistic materials the amplitude mode is often masked by
other low-energy excitations. These complications are
avoided by considering atomic bosonic superfluids, de-
scribed by a complex order parameter field, which con-
stitute the cleanest experimental realization.

Generic superfluids do not feature a well-defined Higgs
boson (by ’well-defined’ we understand a mode seen as a
sharp resonance). Weakly-interacting gases do not have
it because at and around the critical temperature Tc for
the superfluid (SF) to normal fluid phase transition all
long-wave elementary excitations are overdamped, while
at T → 0 the low-energy spectrum is exhausted by the
Bogoliubov quasiparticle excitations where phase and
density are canonical variables. Strong interactions do
not necessarily change this picture. As long as the critical
temperature remains large, as in 4He, long-wave excita-
tions are overdamped at |T −Tc| � Tc. At low tempera-
ture, only the Nambu-Goldstone phase modes remain at
low frequencies whereas the amplitude mode is pushed
to the incoherent continuum at the (large) characteris-
tic interaction energy scale. Suppressing Tc by increas-
ing interactions may trigger a first order transition to
the solid phase and not work either. It is thus crucial
to consider an experimental system with a second-order
quantum critical point (QCP) where Tc for superfluidity
can be tuned to near zero.

The Bose-Hubbard model
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(µ−vi)ni , (1)

with experimentally adjustable ratios between the hop-
ping amplitude J , on-site interaction U , chemical po-
tential µ, and trapping potential vi, provides an accurate
description of ultra-cold bosonic atoms in optical lattices.
At integer filling factor, ν = 〈ni〉, and zero temperature it
undergoes a second-order quantum phase transition from
SF to the Mott insulator (MI) phase as the interaction
strength is increased [4]. The critical field theory be-
hind this transition is Lorentz-invariant and particle-hole
symmetric (while the SF-MI transition for generic values
of ν belongs to the universality class of the ideal Bose
gas at vanishing density and is excluded) [4, 5]. Despite
the decay into two phase modes the existence of a sharp
Higgs boson is guaranteed in two special limits: (i) in a
three-dimensional (3D) system where the corresponding
4D quantum field theory is at the upper critical dimen-
sion with asymptotically exact mean-field behavior and
vanishing decay rates (see Ref. [6] for an experimental
observation in a quantum antiferromagnet); (ii) at large
momentum when the relativistic time dilation effect leads
to an increased quasiparticle decay time.

The most intriguing question is whether the low-
frequency Higgs boson can be seen as a well-defined ex-
citation at zero momentum at the density-driven QCP of
the 2D Bose-Hubbard model and how it disappears with
detuning to the SF phase. Equally important are finite
temperature effects and the role of the trapping poten-
tial in experiments. A theoretical treatment of the Higgs
amplitude mode is notoriously difficult and controversial.
In Refs. [5, 7–9] exact scaling laws in the low-frequency
limit were established, as well as arguments given that
the mode is at the edge of the two-phonon continuum,
rendering the mode overdamped. Huber et al. used a
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FIG. 1. Universal scaling predictions for the scalar suscepti-
bility (solid lines). The dashed-dotted line depicts prediction
of Ref. [12] and misses most of the spectral density at the
relevant energy scale ∆ ∝ (1− U/Uc)ν . The two alternatives
for connecting universal power laws are shown by dashed lines
(one may also imagine multiple peaks in the crossover region).

variational Ansatz which, however, predicted a spurious
first order SF-MI transition, and thus was limited to the
parameter regime away from quantum criticality [10, 11].
Podolsky et al. generalized the field theoretical results of
Ref. [7] to high frequencies and discussed in detail the re-
sponse function for the order-parameter density (scalar
response) within a 1/N and a weak coupling expansion
schemes [12]. They revealed a broad peak whose maxi-
mum saturates at finite value at the QCP and concluded
that close enough to the transition, it becomes impossible
to identify the Higgs energy with the peak position. Their
findings are in quantitative and qualitative disagreement
with those reported here, as is detailed in the supplemen-
tary material [13]. The major problem with the results
of Ref. [12] is the strong violation of the universal low-
frequency scaling law for the scalar response function [5],
S(ω) ∝ ∆3−2/νF (ω/∆), where ∆ ∝ (1 − U/Uc)ν is the
characteristic energy scale in proximity of the quantum
critical point, and ν = 0.6717 the correlation length ex-
ponent. As is shown in Fig. 1, the theory misses most of
the spectral density in the ∆ < ω < 4J range.

In this Letter, we employ quantum Monte Carlo sim-
ulations of the 2D model (1) in the lattice path integral
representation using the worm algorithm [14–16] to study
the spectral density of the kinetic energy correlation func-
tion at zero momentum, in combination with an analytic
continuation method. We unambiguously demonstrate
the existence of a low-energy resonance peak associated
with the Higgs boson in close vicinity of the QCP by dis-
criminating it from the second broad peak at the typical
lattice-model energies. The Higgs boson energy, ωH, ob-
tained from the peak maximum increases with detuning
nearly identically as that of the particle-hole gap ∆MI in
the MI phase. The spectral density associated with the

Higgs boson broadens with detuning and quickly over-
laps with other higher energy modes: It is no longer seen
as a resonance peak for a detuning as small as 20 %, in
line with the parameter regime where particle and hole
masses were found to be equal on the MI side [17]. On the
other hand, in close vicinity of the QCP the Higgs boson
remains visible in the spectral density at temperatures
as high as Tc. A peak is even seen in the normal phase;
only at a temperature T > 2Tc the Higgs resonance is no
longer visible. However, the onset of strong response at
low-frequency is barely modified. These results, further
supported by simulations of realistic trapped systems,
explain why the experimental protocol of extracting ωH

from the onset of strong response [18] works even in the
absence of low-frequency resonance.
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FIG. 2. Spectral density S(ω) of the kinetic energy correlation
function for U/J = 16 (thick solid line), 14 (dashed line),
and 12 (thin solid line) at low temperature T/J = 0.1. The
Higgs amplitude mode (ωH) emerges as a well-defined peak
on approach to the quantum critical point at Uc = 16.7424.

A small uniform modulation of the optical lattice
depth [19] leads, under mapping to the Bose-Hubbard
model (1), to a perturbation proportional to the total

kinetic energy of the system [20], K = −J
∑
〈ij〉 b

†
i bj ,

V = δ(t)K , δ(t) =
δJ(t)

J
, (2)

where the small δJ(t) is proportional to the lattice mod-
ulation amplitude. Within standard linear response the-
ory one computes the corresponding correlation function
χ(iωn) = 〈K(τ)K(0)〉iωn

+ 〈K〉 at Matsubara frequen-
cies, ωn = 2πTn, and performs an analytic continuation
to obtain its spectral density S(ω). This quantity is di-
rectly proportional to the energy absorbed by the system
in the experiment [18]. In the path integral represen-
tation K(iωn) has a straightforward Monte Carlo esti-
mator,

∑
k e

iωnτk , where the sum goes over all hopping
transitions in the imaginary time evolution of the system.
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Thus χ(iωn) is computed exactly, i.e., the error bars are
statistical and they can be reduced arbitrarily by increas-
ing the simulation time. Our relative error bars for the
lowest frequencies are of the order of 10−5. Nevertheless,
long simulations are required because finite χ is found
only after the cancelation of macroscopic factors. The
combination of the linear system size (L = 20 in prac-
tice) of our square lattice, temperature, and U/T has to
be chosen such that L is always significantly larger than
the correlation length by a factor of at least four in order
for finite size effects to be negligible. In the supplemen-
tary material we provide details about the analytic con-
tinuation procedure which extracts the spectral density
S(ω) = Imχ(ω) from χ(iωn) and show tests confirming
the reliability of the results reported here [13].

Unambiguous evidence for the existence of the sharp
amplitude mode in the vicinity of the quantum critical
point located at (U/J)c = 16.7424 [21] is provided in Fig.
2. We observe a well-defined resonance in the normalized
spectral density at a scale much smaller than U , which
softens on approach to the QCP in a way that is com-
patible with the 3D XY universality class, as is shown
in Fig. 3. We identify the energy of the Higgs boson
with the peak maximum. The width of the resonance
peak narrows when U → Uc, suggesting that this peak
is part of the universal scaling scaling function [5] which

can be rewritten as S(ω) ∝ ω
3−2/ν
H F (ω/ωH). Since at

frequencies ωH � ω the response must be independent
of ωH we have S(ω � ωH) ∝ ω3−2/ν = ω0.0225, i.e. it
is increasing extremely slowly. The overall picture in the
asymptotic limit is that of a Higgs peak superimposed
on a smeared step function, see Fig. 1. When tuning
away from the critical point, the Higgs mode broadens
and overlaps with the second peak around the crossover
scale U/J ≈ 12. Beyond this point the Higgs boson can
no longer be discerned as a separate mode, as is shown
in Fig. 2. This limits the observation of the amplitude
mode to the region in close vicinity of the QCP.

We also would like stress that the resonance at ωH is
seen on both sides of the QCP, i.e. it is also present in the
MI phase close to the QCP. The similarity between the
two responses for the same amount of detuning from the
critical point, as is evident from Fig. 4, is expected inside
the correlation volume despite obvious differences in the
low-frequency part. This result provides further evidence
that the analytic continuation procedure is stable.

Though our imaginary time data decaying as ∼ 1/τ4

for large τ is compatible with the scaling prediction [7, 8]
S(ω) ∼ ω3 for ω → 0, our errors bars at large imaginary
times are too large and our system sizes too small to
resolve this law unambiguously in analytic continuation.

There is substantial room for incoherent spectral
weight between ωH and ω ≈ U which can be filled by
other modes such as ’doublon’ (double occupancy) ex-
citations, pairs of phase modes with zero total momen-
tum, as well as multi-Higgs modes. Our interpretation

FIG. 3. (Color online). Characteristic energies in the vicinity
of the quantum critical point at (U/J)c = 16.7424. Black
circles for U > Uc and U < Uc stand for particle-hole gaps
in the MI phase [17] and energies of the Higgs bosons, re-
spectively. Red squares denote the location of the broad
secondary peak in S(ω) until it merges with the amplitude
mode at interaction strength U ≤ 12J to form a single peak
(blue squares). Shaded regions indicate the characteristic
broadening of peaks. The thick black line is the critical law
2.25J |(U −Uc)/J |ν obtained by fitting the smallest MI gaps;
its mirror reflection is shown as thin black line. The dashed
red line indicates the typical interaction scale U/J .
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FIG. 4. Spectral densities in the SF and MI phases approx-
imately with the same amount of detuning from quantum
criticality |Uc − U |/U ≈ 0.015.

of the data is that higher frequency doublons (’screened’
by interaction effects) overlap with lower frequency crit-
ical phase modes creating an intermediate broad peak at
frequencies between U and zJ , except extremely close to
QCP where the second peak saturates at about 6J when
tuning U → Uc. We associate it with pairs of phase
modes with opposite momenta near the Brillouin zone
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boundary (which dominate in the integral over momen-
tum space). This classification, however, is not rigorous
in the quantum critical region [5], as is evidenced by the
similarity between the SF and MI responses.

Current experiments with ultra-cold atoms are typi-
cally performed at finite temperature T/U ≥ 0.05 (such
that T/J ∼ O(1) at U = Uc) and in the presence of
parabolic confinement. In Fig. 5 we demonstrate that
for the representative case U/J = 16 with Tc/J ≈ 0.45
the Higgs mode remains clearly visible at all tempera-
tures below the superfluid transition temperature and
even slightly above it! At a temperature T > 2Tc the
two peaks finally merge . Nevertheless, S(ω), still levels
off at the amplitude mode frequency ω ≈ ωH and has the
same frequency for the onset of strong response, meaning
that these features can be used to extract ωH experimen-
tally. Note that phase coherence can extend across finite
systems at temperatures well above the thermodynamic
Tc for the Kosterlitz-Thouless transition characterized by
an exponentially divergent correlation length.
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FIG. 5. (Color online). Evolution of spectral density with
temperature at U/J = 16. As temperature is increased from
T/J = 0.1 (thin black line), to T/J = 0.2 (thin dashed line),
and T/J = 0.5 (thick blue line), the peaks get broader but
remain clearly identifiable. At T/J = 1 (thick dashed green
line) the two peaks merge.

Inhomogeneous broadening of spectral density caused
by the trap has a dramatic effect on the structure of
S(ω) as signals from different parts of the system are su-
perimposed on each other. Moreover, in the presence
of external potential gradients the spectral density is
no longer vanishing at ω → 0 because of low-frequency
sound modes (predominantly in the trap edges), in line
with experimental observations [18]. Under these condi-
tions, the Higgs mode can no longer be seen as a sharp
resonance in S(ω). There is instead a broad maximum
with irregular shape. Finite temperature effects further
transform it into a smooth single peak. In Fig. 6 we show

the comparison between the homogeneous and trapped
cases. The simulation was performed for realistic exper-
imental parameters [18] but at a variety of temperatures
in order to discriminate between trap and temperature
effects. Even though the resonance is lost in the total sig-
nal, the steep onset of spectral response still correlates
remarkably well with the energy of the Higgs boson.
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FIG. 6. Effects of trapping potential and finite temperature
for U/J = 14 (Tc/J ≈ 1.04). The spectral density of a ho-
mogeneous system at low temperature with Higgs resonance
(dashed line) transforms into a broad (irregular) peak due to
inhomogeneous broadening in a trapped system with N = 190
particles at unit filling factor in the middle (thin solid line).
At a temperature T/J = 0.5 (thick solid line) we observe a
smooth single peak.

In conclusion, we find that the Higgs boson is a well-
defined though significantly damped excitation in close
vicinity (∼ 20%) of the particle-hole symmetric and
Lorentz-invariant SF-MI quantum critical point in two
dimensions. It is seen as a resonance in the kinetic energy
correlation function which is directly probed through
the modulation of the optical lattice depth in experi-
ments with ultra-cold atoms. The energies of the am-
plitude mode match particle-hole gaps in the Mott in-
sulator phase for the same amount of detuning away
from quantum criticality. While temperatures at least
as high as the critical temperature for superfluidity pre-
serve the Higgs resonance, inhomogeneous broadening in
small trapped systems erases resonance-type features in
the spectral function. Nevertheless, it is possible to de-
termine the energy of the amplitude mode from the onset
of strong response, as is done in a recent experiment [18].
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