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We show that strained or deformed honeycomb lattices are promising platforms to realize frac-
tional topological quantum states in the absence of any magnetic field. The strained induced pseudo
magnetic fields are oppositely oriented in the two valleys [1–3] and can be as large as 60-300 Tesla as
reported in recent experiments [4, 5]. For strained graphene at neutrality, a spin or a valley polarized
state is predicted depending on the value of the onsite Coulomb interaction. At fractional filling, the
unscreened Coulomb interaction leads to a valley polarized Fractional Quantum Hall liquid which
spontaneously breaks time reversal symmetry. Motivated by artificial graphene systems [5–8], we
consider tuning the short range part of interactions, and demonstrate that exotic valley symmetric
states, including a valley Fractional Topological Insulator and a spin triplet superconductor, can be
stabilized by such interaction engineering.

PACS numbers: 73.43.-f,73.22.Pr,72.80.Vp

Fractional Quantum Hall (FQH) phases are macro-
scopic scale manifestations of quantum phenomena with
unique features including the fractional charge and
statistics (abelian or nonabelian) of elementary excita-
tions. This topological order originates from the strong
Coulomb interactions between electrons moving in a par-
tially filled Landau level induced by a strong magnetic
field. Recently Chern insulator models with a nontriv-
ial flat band [9–11] were also shown to exhibit topolog-
ical order in the absence of any magnetic field [12–17].
Those so-called Fractional Chern Insulators (FCIs) ex-
plicitely break time-reversal symmetry T as did the orig-
inal Haldane model [18]. In contrast, fractional topo-
logical insulators (FTIs) [19–22] can be naively thought
of as two copies of time-reversed Laughlin FQH states,
thereby obeying time reversal symmetry T . In spite of
few proposals [23, 24], the experimental implementation
of FCIs and FTIs remains very challenging.

Motivated by recent experimental advances [4, 5], we
introduce another route towards fractional topological
phases making use of the gauge fields that can be gen-
erated in a deformed honeycomb lattice [1–3]. The as-
sociated effective magnetic fields are opposite in the two
different valleys and therefore they do not break the time
reversal symmetry T [1]. Indeed, a scanning tunneling
spectroscopy study [4] confirmed that straining graphene
could yield flat Pseudo Landau Levels (PLLs) [2, 3] with
effective fields as high as 300 T in each valley. Most
recently by designing a molecular honeycomb grid of
carbon monoxide molecules on top of a copper surface,
Gomes at al. [5] were able to observe the linear dispersion
of Dirac fermions in graphene, and furthermore to gener-
ate nearly uniform pseudo-magnetic fields as high as 60
T by deforming this grid [5]. Finally other realizations of
artifical graphene systems, in patterned GaAs quantum

wells [6] or with cold atoms trapped in hexagonal opti-
cal lattices [7, 8], also provide experimental platforms to
create strong valley-dependent effective magnetic fields.

In this Letter, we first consider real graphene under
strong pseudo-magnetic fields generated by a mechanical
strain. We investigate the interaction-driven phases in
the n = 0 PLL using mean field and numerical exact-
diagonalization. The unscreened Coulomb interaction
stabilizes a valley polarized Laughlin liquid at filling 2/3
of the n = 0 PLL. This states breaks spontaneously
time reversal symmetry and is characterized by a finite
charge Hall effect. At the neutrality point, we predict
that strained graphene have either spin polarized or a
valley polarized state, depending on the strength of the
on-site interactions, with current estimates [25] favoring
the former state. Second we have investigated what type
of interactions could destabilize the valley-polarized 2/3
state towards a valley-symmetric (time-reversal invari-
ant) FTI. It turns out that the 2/3 state is rather robust
for realistic interactions. Neverthess attractive local cor-
rections to the Coulomb interaction can stabilize this val-
ley FTI, which is a FTI where the valley plays the role
of spin. Finally further increase of the attractive inter-
actions leads to a spin triplet superconductor. Since the
reported effective magnetic field strengths are around 300
T [4] or 60 T [5], the predicted phases might conceivably
be realized with larger energy gaps than in FQH states
under a real magnetic field.

Model. The noninteracting part of our model has
been proposed by Guinea et al. in order to realize PPLs
in strain graphene under zero magnetic field [2]. The
corresponding tight-binding Hamiltonian reads

H0 =
∑
ri

∑
a=1,2,3

(t+δta(ri))(a
†(ri)b(ri+δa)+h.c.), (1)
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where δta(ri) is the strain-induced variation of the near-
est neighbor hopping amplitude (with respect to the un-
perturbed value t ' 2.7 eV) between A-site at ri and
B-site at ri + δa of the bipartite honeycomb lattice [1].
The smooth deformation field δta(ri) is chosen in such
a way to produce a nearly uniform magnetic field with
a valley-dependent sign [2, 26]. The valley dependent

vector potential Aξ(r) = ξ
∑
a=1,2,3 δta(r)eiK.δa mini-

mally couples to linearly dispersing low energy excita-
tions near the Dirac points located at momenta ξK with
K = (4π/3

√
3a0)ex and ξ = ±1, a0 being the carbon-

carbon bond length [1]. The uniform pseudomagnetic
field induces a pseudo Landau level (PLL) electronic
structure En = ξ

√
2e~v2FB|n|, where n is the relative

integer labelling the nearly flat levels (see supplemen-
tary). Beside the macroscopic orbital degeneracy, each
of those PLLs has a four-fold degeneracy associated with
the spin and valley isospin degrees of freedom. In con-
trast to the full SU(4) symmetry of graphene in an ex-
ternal real magnetic field [27, 28], the internal symmetry
of strained graphene is SU(2) for the spin and only Z2

for the valley degree of freedom.
In this work, we study interaction effects within the

partially filled zero-energy flat band (n = 0 PLL) cre-
ated by strain. We consider the following interaction
Hamiltonian on the honeycomb lattice:

Hint =
∑
ri 6=rj

V (ri − rj)n(ri)n(rj) + U0

∑
ri

n(ri)n(ri)

(2)

+ Unnn
∑
〈ri,rj〉

n(ri)n(rj),

where V (ri − rj) = e2/4πε|ri − rj| denotes the bare
Coulomb potential, n(ri) the fermion number operator
on site ri, and 〈ri, rj〉 represents summation over all
pairs of next-nearest-neighboring (NNN) sites. The bare
Coulomb interaction is the dominant interaction due to
the poor screening in neutral graphene. Nevertheless we
also allow arbitrary modification of the short-distance
part of the Coulomb interaction by adding local on-site
and NNN interactions with respective strengths U0 and
Unnn. The nearest neighbor interaction is not effective
in presence of strong pseudo-magnetic field because in
the zero energy PLL the noninteracting wave functions
are localized on a single sublattice (see Supplementary).
Interesting proposals for altering short ranged interac-
tions using substrates with momentum dependent di-
electric susceptibility has been discussed [29]. Unfortu-
nately the actual values of U0 and Unnn are not known
in strained graphene although first principles calculations
yield total on-site coupling U0 = 9.3 eV and a small devi-
ation Unnn ' −0.04e2/4πεa0 of the NNN coupling from
its bare Coulomb value in freestanding (and unstrained)
graphene in zero magnetic field [25].
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FIG. 1: (Color online). The n = 0 PLL at fractional
filling factor ν = −2 + 2/3: spinless electrons. Up-
per panel left: Low energy spectrum as a function of the
next-nearest-neighboring coupling Uop

nnn between opposite val-
leys (deviation from the pure Coulomb value). In the region
−0.73 < Uop

nnn < −0.58, the nine lowest energy states be-
come close together and almost degenerated, thereby forming
the groundstate manifold (GSM) of the valley FTI. The inset
shows the groundstate energies of the valley polarized (V-
2/3 FQH) and FTI states. Upper panel right: The boundary
phase dependence and the robust gap between the GSM and
higher energy states for Uop

nnn = −0.6 inside the FTI phase.
Lower panel: Phase diagram as a function of Uop

nnn for spin-
less electrons. Parameters for the exact diagonalization: The
noninteracting orbitals are determined on a 24 × 24 lattice
with a pseudomagnetic flux Φ0/48 per hexagon (see supple-
mentary material). The degeneracy of n = 0 PLL is Ns = 12
per spin direction and per valley. The low energy spectrum
is calculated for Ne = 8 (NL = NR = 4) electrons with polar-
ized spin occupying those Ns = 12 states. Energies are given
in units of e2/4πεa0 ' 10 eV.

Fractionalized phases and superconductivity at
2/3 filling of the n = 0 PLL. Fractional Hall states in
graphene under an external magnetic field were reported
experimentally [30–32]. Although strain produces flat
PLLs, it is not evident that interactions can generate in-
compressible phases at fractional filling in time-reversal
invariant strained graphene. We focus here on the 2/3
filling of the four-fold degenerate n = 0 PLL. This 2/3 fill-
ing has been studied so far in graphene sheets [33, 34] and
in GaAs Hall bilayers [35] under real magnetic field. In
the present case of strained graphene, this particular fill-
ing allows for interesting possibilities including valley fer-
romagnetism (which breaks spontaneously time-reversal
symmetry), valley symmetric topological states, and also
superconductivity.
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FIG. 2: (Color online) The n = 0 PLL at fractional filling
factor ν = −2 + 2/3: spinfull electrons. Left panel: The
energy of different ground states as a function of the next-
nearest-neighboring coupling Unnn defined in Eq. (2). In the
range Unnn < −0.8, which includes the pure Coulomb inter-
action of realistic graphene (Unnn = 0), the ground state is
a valley polarized and spin singlet FQH state (green crosses).
Only a very significant attraction Unnn < −0.8 can destabi-
lize this state towards a valley unpolarized and spin polar-
ized superconducting state (red crosses). This superconduct-
ing phase is characterized by a finite superfluid density as
shown in the inset. Right panel: Two lowest energies in each
momentum sector as a function of k for the valley-polarized
state (Unnn = −0.6, upper) and for the spin-polarized su-
perconductor (Unnn = −1, lower). Parameters for the exact
diagonalization: same than in Fig. 1 but with the spin degree
of freedom.

Real graphene: time reversal breaking FQH state in a
single valley. We first consider real graphene with the
unscreened Coulomb interaction, namely U0 = Unnn = 0
in Eq. (2). Then the ground state is found to be a
valley polarized FQH state both for spinless (Fig. 1) and
spinfull (Fig. 2) electrons. This valley-polarized state
breaks spontaneously the time-reversal invariance of the
strained graphene Hamiltonian, and spins are in a singlet
state as in the 2/3 FQH states [33–35] obtained under
real magnetic field. We have further checked that the
Chern number is 2/3 and that the three lowest energy
states form a degenerated ground state manifold. Due to
the large values of strain-induced pseudomagnetic fields,
this state may be realized with elevated energy scales,
allowing for the stabilization of fragile states. In order
to test quantitatively the robustness of the 2/3 valley
polarized FQH state, we now vary the parameter Unnn in
the Hamiltonian Eq. (2). It turns out that the 2/3 valley
polarized state is rather stable both in the spinless (Fig.
1) and spinfull (Fig. 2) cases. Nevertheless when Unnn
is sufficiently negative, exotic valley symmetric phases
can also be realized as detailled below. For clarity we
describe separately the spinless and spinfull cases.

Spinless fermions and valley fractional topological in-
sulator (FTI): Let us consider spinless electrons and de-
compose the NNN coupling of Eq.(2) into an interaction
between opposite-valley electrons (Uopnnn) and an interac-

tion between same-valley electrons (Usnnn). We first tune
the intervalley correlations (Uopnnn) while Usnnn = 0 (but
note that electrons in the same valley still interact via
the bare Coulomb potential).

In some intermediate parameter range (−0.73 <
Uopnnn < −0.58), an interesting quantum phase emerges
with nine nearly degenerated states forming a ground
state manifold GSM (Fig. 1.a, lines with symbols) which
is well separated from the higher energy states (Fig 1.a,
lines without symbols). This valley-symmetric and 9-fold
degenerated phase is called here valley fractional topolog-
ical insulator, since valley plays the role taken by spin in
the previously discussed ”spin” FTIs [19–22]. Moreover
the momentum quantum numbers of these states are at
k = 0 and other k determined by shifting the momen-
tum of each electron by an integer multiple of 2π/Ns,
where Ns is the PLL orbital degeneracy. This determines
three different momenta sectors (k = 0, π/3, and 2π/3)
and there are three near degenerate states in each sector.
These sectors can be considered as ground state flows
from one sector to another upon inserting flux through
adding the twist boundary phase (Fig. 1.b).

As a complementary characterization of the valley FTI
phase, we further perform valley-pseudospin Chern num-
ber calculation [36, 37] by adding the same boundary
phase along x-direction, and the opposite ones along
y-direction for both valleys [38, 39]. This generalized
pseudospin Chern number is well defined as the electron
number in each valley is conserved thus that the valley-
pseudospin is a good quantum number. We find a total
Chern number quantized to 6 for all nine levels, charac-
terizing the 2/3 fractionalized valley spin-Hall effect.

Finally we can also turn on and increase the intraval-
ley part of the NNN coupling Usnnn (see supplemen-
tary). In the limit of very large intravalley correla-
tions (Usnnn → ∞), we expect a totally valley-decoupled
1/3 + 1/3̄ phase consisting of two 1/3 Laughlin FQH
states with opposite chiralities. We find no phase tran-
sition between the valley FTI state discussed above (at
Usnnn = 0 ) and the decoupled fractional valley Hall in-
sulator (see supplementary).

The above results for spinless electrons can be summa-
rized in a phase diagram (Fig. 1.c). For Uopnnn > −0.35
(which includes realistic graphene), electrons have a nat-
ural tendency towards valley ferromagnetism, which is
expected for repulsive interactions in a such a flat band
system. In order to realize the valley FTI, one needs
to counteract this trend by tuning an attraction between
electrons in the opposite valleys. Besides, one also notices
a narrow range of parameters (−0.58 < Uopnnn < −0.35)
where the valley-polarization is lost but the GSM de-
generacy not yet achieved. The understanding of this
crossover region between the valley polarized FQH insu-
lator and the valley FTI is still lacking and will be studied
elsewhere. Finally superconductivity might appear when
attraction is dominant (Uopnnn < −0.58). This flat band
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superconductivity is discussed below in more details for
the spinfull electrons.

Spinfull fermions and spin triplet superconducting
state. We now consider spinfull fermions and we tune
Unnn without distinguishing the valleys. For sufficiently
large attraction (Fig. 2), namely Unnn ≤ −0.8 (note that
when added to the Coulomb repulsion, this ends up giv-
ing a somewhat smaller but still attractive next nearest
neighbor interaction of U tot

nnn = −0.2), the ground state of
the spinful model becomes a spin triplet and valley singlet
superconducting state which is consistent with BCS-type
mean field treatment (see supplementary). The super-
conductivity is characterized by a finite superfluid den-

sity ns = 1/2
∂2Eg

∂θ2 which is calculated from the change of
the ground state energy Eg upon adding a small phase
twist θ as [38, 40]. Moreover the finite jump for ns at
the transition point Unnn = −0.8 (inset of Fig. 2) points
towards a first-order transition between the valley polar-
ized state and the spin polarized superconducting state.
The typical momentum dependence of energy (Fig. 2.c)
differs drastically from the 2/3 valley-polatized FQH case
(Fig. 2c) as the ground state is in the k = 0-sector with-
out the typical quasi-degeneracy of FQH state.

Half-filling n = 0 PLL. We now turn to the case
of neutral graphene (filling factor ν = 0) under large
pseudomagnetic fields generated by strain. Due to the
electron-hole symmetry, the n = 0 PLL is half-filled
and there is natural a competition between valley fer-
romagnet ΨV =

∏
k c
†
R,k,↑c

†
R,k,↓|0〉 and spin ferromag-

net ΨS =
∏
k c
†
R,k,↑c

†
L,k,↑|0〉 ground states, k labeling the

Landau orbitals of the zero energy (n = 0) PLL and
(R,L) the valleys. Similar issue of valley and spin fer-
romagnetism in the half-filled n = 0 Landau level has
attracted a lot of interest for unstrained graphene under
a real magnetic field [27, 28, 41–44]. Here we revisit this
problem in the case of a time-reversal symmetric pseu-
domagnetic field.

We first consider the case of pure Coulomb interaction
(U0 = Unnn = 0). Using Hartree-Fock method [27, 28]
we find that the valley and spin polarized states have
the same energy when only dominant density-density
terms are taken into account. We find that the inter-
valley backscattering terms lift this degeneracy by favor-
ing the valley polarization. Note that for real magnetic
field, those backscattering terms are absent in the zero-
energy Landau level (n = 0) due to the symmetry of
the eigenspinors [27, 28]. Also contrary to the real mag-
netic field Hall effect, long range Coulomb interaction
prefers an Ising-like Z2 valley polarized state rather than
a more general SU(2)-valley-rotated state (see Supple-
mental material).

We now introduce on-site Hubbard interaction U0 while
Unnn = 0 in Eq. 2 and compute numerically the total en-
ergy of finite size systems on a torus (Fig. 3, squares). As
expected solely the energy of the valley polarized state is
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FIG. 3: (Color online) Neutral graphene: ν = 0. Upper
panel: The Hartree-Fock energies of the Ising valley polarized
(ΨV ) and spin polarized (ΦS) states as a function of the on-
site Hubbard coupling U0 while Unnn = 0 (squares). We
have also plotted the Hartree-Fock energies as a function of
Unnn in the absence of on-site correlation, U0 = 0 (triangles).
Lower panel: Corresponding phase diagrams. The energy is in
units of e2/4πεa0 where a0 is the distance between the nearest
neighbor sites. The red dot indicates the value of the coupling
U0 for freestanding and unstrained graphene according to Ref.
[25]. Numerical parameters: The lattice we considered has
96×96 sites. The degeneracy of the PLL orbits were Ns = 48
while electron number is Ne = 96.

modified while the spin polarized state is unchanged (Fig.
3, horizontal dashed line) because double occupancy is
forbidden by the Pauli principle in the fully spin polar-
ized state. As a result, the competing valley polarized
state (Fig. 3, empty squares) is the groundstate as long
as the Hubbard interaction is not too repulsive (U0 < 0.5
in units of e2/4πεa0), including the pure Coulomb case.
Further increase of the on-site Hubbard interaction stabi-
lizes the spin ferromagnet state. Using gating or different
substrates, it could be possible to switch the groundstate
between spin ferromagnet and valley Ising ferromagnet.
Spin polarized STM and Kerr imaging could indeed de-
tect these competing ground states. Here the valley Ising
ferromagnet is an integer quantum Hall state with two
units of quantized Hall conductance, that spontaneously
breaks time reversal symmetry.

In order to test the sensitivity of the phase diagram
with respect to the details of the short range part of the
interaction, we further consider a second model where the
next-nearest-neighbouring coupling Unnn is varied while
U0 = 0. Interestingly we have obtained the reverse phe-
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nomenology where repulsive Unnn tends to valley polarize
the system (Fig. 3, triangles).

Conclusion. We have shown that strained graphene
hosts various fractional topological phases which depend
on the detailed structure of the electron-electron inter-
actions. In current experiments on both real graphene
[4] and artificially designed molecular graphene [5], the
nano-scale strained regions are small, typically of the or-
der of the magnetic length, and they are strongly coupled
to a metallic substrate. Future experiments on insulating
substrates could address bigger strained regions. Never-
theless, signatures of fractional states in restricted do-
mains and interactions with itinerant electrons outside
the strained region will be important topics for future
study. The n = 0 Landau levels are expected to be the
best isolated, since they occur at the Dirac point, where
the density of itinerant states is the smallest.

The predited phases relies on the flatness of the PLL
n = 0 which requires spacially homogeneous strained in-
duced magnetic fields in each valley. To this respect arti-
ficially patterned honeycomb lattices [5, 6, 45] potentially
allows for a better control upon the deformation pattern
and therefore upon the flatness of the PLLs, in compari-
son to the mechanical strain in real graphene. Cold atoms
in hexagonal optical lattices [7, 8] are particularly suit-
able to access the attractive interaction regime. Finally
we stress that the long range part of the Coulomb in-
teraction is always present in our calculations. This is at
odds with current experiments [4, 5, 7, 8] but it should be
relevant for real graphene and for future experiments on
artificial graphenes realised in surface states lying on in-
sulating substrates. Finally this study opens the prospect
of discovering a series of new nontrivial topological phases
at other fractional fillings and in higher pseudo Landau
levels as well.
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Note: After submission of our preprint
(arXiv:1111.3640), a study of non zero PLLs in strained
graphene [46], and related work on spin fractional
topological insulators [47] appeared.
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