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Space-charge-limited currents are important in energy devices such as solar cells and light-emitting diodes,
but the available theory from the 1950’s finds it necessary topostulate defect states that are distributed in energy
in order to match data. Here we show that this postulate is notwarranted. Instead, we demonstrate that dopants
and the concomitant Frenkel effect, which have been neglected, control the shape of measured current-voltage
characteristics. We also account for the observed peak in the noise power. The new theory can anchor efforts to
develop experimental techniques to measure deep-trap levels.
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Energy-conversion devices such as solar cells and light-
emitting diodes rely on carrier injection, whose uncompen-
sated charge and the concomitant push-back electrostatic field
give rise to space-charge-limited currents (SCLCs). [1–5]For
defect-free semiconductors, such currents were predictedto
exibited a quadratic dependence on the voltage by Mott and
Gurney. [6] Early data, however, [7, 8] however, exhibited an
initial slow rise followed by a sharp, power-law rise at a criti-
cal voltageV0, with the Mott-Gurney limit attained asymptot-
ically. Rose [8] viewed the slow rise as an Ohmic current by
available carriers and attributed the sharp rise to deep-level
defects: injected carriers get trapped and generate a push-
back voltage until all traps are filled (trap-filled limit or TFL);
at the TFL, the push-back voltage is overcome and the cur-
rent rises vertically. The Mott-Gurney limit is approachedat
higher voltages when the traps have no further effect. In de-
veloping a pertinent theory, Rose and later Lampert [9, 10]
concluded that the only way to get a power-law instead of ver-
tical rise in the current is to postulate an exponential tailof
defect density of states (DOS). Since then, data are typically
fitted piecemeal in the three regions, yielding limited useful
information. In 2005, measurements of noise power spetrum
in organic semiconductors [11] found a peak at the TFL that
cannot be explained by the Lampert theory. Very recently, it
was demonstrated [13] that the presence of dopants can have
a large effect on SCLC’s because dopant electrons can fill the
deep traps, but a pertinent theory is lacking. For undoped ma-
terials, a Gaussian distribution of defect states was proposed
[14] as an alternative to the exponential tail.

In this Letter, we demonstrate that the full inclusion of
dopants and theinterplay between dopants and traps, which
controls the power-law rise, remove the need to postulate an
exponential or Gaussian defect DOS (such disributions may
of course exist in materials like polymers). The underlying
physics is simple and elegant. Dopant energy levels are by
definition above the trap levels. Because dopant densities
must be smaller than those of the deep traps for SCLCs to
occur, [12] most dopant electrons initially occupy trap levels,
wherebythe Ohmic rise is controlled by thermal excitation

from the deep traps. The sharp rise is initiated when all deep
traps are filled, as much as is allowed by local thermal equili-
bration, but the dopant levels are now a mitigating effect: the
power-law rise is controlled by the dopant energy level [13]
and the Frenkel effect, [15] namely the lowering of the ioniza-
tion energy by the electric field, which is screened by the free
carriers. [16] The power-law rise is finished when all trapsand
dopants are filled, as allowed by thermal equilibration, andis
followed by the Mott-Gurney regime. For samples with high
trap densities, trap-to-dopant hops may dominate the initial
Ohmic-like rise of the current, suppressing the noise powerat
low voltages. [11] The detailed derivation, parameters forfit-
ting experiments, and a FORTRAN code, are provided in the
Supplemental Material.

The basic elements of the theory are quite simple. We
consider a homogeneous material with concentrationsND of
donors andNt of deep traps withNt > ND. At a given tem-
peratureT and external voltageV , the elecrostatic potentialφ
obeys the Poisson equation,

∇
2φ = −

e

ǫǫ0
(n+ nt −N+

D − p), (1)

wheren is the electron carrier density,nt is the density of
trapped electrons,N+

D is the density of ionized donors, andp
is the free hole density; the electron current is,

Jn = µn (enE + kT∇n) , (2)

whereE = −∇φ, andµn is the electron mobility, which de-
pends onn,N+

D , andT . All quantities exceptT andJ depend

on positionx, and
∫ L

0
E(x)dx = V , whereL is the length of

the sample. There is a corresponding equation for the hole
current and the relationnp = n2

i , whereni is the intrinsic
density, wherebyn is the only independent variable. Assum-
ing thermal equilibration at each voltage, one can derive ex-
pressions fornt andN+

D in terms ofn (see below), whereby
Eqs. (1) and (2) are coupled equations inφ andn. For each
choice ofJ , they can be solved and yield the corresponding
V for a current-voltage curve.
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FIG. 1: Comparing the roles of dopant and trap level configurations
for a model system. (a) Lampert model in whichn0 is an independent
parameter, with a single trap level atEc − 0.5 eV; (b) Et = Ec −

0.5 eV with single occupancy and different dopant energy levels;
(c) single and double occupancies with different values of on-site
Coulomb energyU , Et = Ec − 0.5 eV andED = Ec − 0.3 eV; (d)
Et = Ec − 0.5 eV,U = 0.33 eV, andED = Ec − 0.37 eV. (b)-(d)
have a self-consistentN+

D
instead ofn0.

5 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

101

102

103

 ED = -0.3 eV
 ED = -0.37 eV

(b) ED = 0 eV
 ED = -0.25 eV

5 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

101

102

103

 With Frenkel
 Without Frenkel

~V  8.8

 

 

Bias (V)

(d)

5 10 100
10-5

10-4

10-3

10-2

10-1

100

101

102

103

 Single Occupancy
 U=0.23 eV
 U=0.18 eV

 

 

C
ur

re
nt

 d
en

si
ty

 (A
/m

2 )

Bias (V)

(c)

5 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

101

102

103

1010cm-3

1014cm-3

n0=1016cm-3

1012cm-3

n0=0
n0=0

 

T=300K
 

T=0K

(a)

C
ur

re
nt

 d
en

si
ty

 (A
/m

2 )

We will demonstrate that the above constitutes a compre-
hensive theory of SCLCs. First, however, we identify the rea-
son that Rose and subsequently Lampert were led to a dead
end and had to postulate an exponential defect DOS. In their
theory,N+

D (x) + p(x), which is equal to the part of the elec-
tron density whose charge is compensated, is set to the den-
sity of free carriersn0 at zero voltage and treated as a fitting
parameter. ThoughN+

D andp are constant at zero voltage,
as electrons are injected into the material, they acquire a de-
pendence onx and their values get reduced as the voltage
increases. This reduction inN+

D is responsible for converting
the would-be vertical rise of the current into a gradual power-
law rise.

The main features of Lampert’s theory is highlighted in Fig.
1a by replacingN+

D (x) + p(x) by a constantn0 in Eq. (1) in-
stead of using the thermodynamic expression to be presented
shortly, and numerically solving the coupled Eqs. (1) and (2)
for a model system withL = 310 nm andNt = 8.3 × 1016

cm−3. The results are as obtained by Rose and by Lampert,
with a vertical riseat a critical voltageV0 = 24 V, followed
by the Mott-GurneyV 2 law. Also shown in Fig. 1a is the
Ohmic rise (blue lines), calculatedseparatelyas in Lampert’s
theory, for several values ofn0. In the absence of free carriers
other than those that are injected (effectivelyT = 0 K), one
getsV0 at [10]

V0 =
eNtL

2

2ǫǫ0
. (3)

If one allows thermal excitation from the deep traps at a fi-
nite temperature, one gets thenonlinearrise shown in red be-
fore reaching the vertical rise (often called the modified Mott-

Gurney regime).
We now illustrate the main features and the inherent power

of the comprehensive theory based on Eqs. (1) and (2). The
other key equations are the expressions fornt andN+

D . We
allow for the possibility that a given defect may have two
trapping levels corresponding to a singly and doubly nega-
tive charged state, respectively (e.g., vacancies). [17–20] The
second trap level is raised by the onsite Coulomb energyU ,
which we treat as a fitting parameter. We get,

nt =
g1NtnNc exp(−E1/kT )

N2
c + g1nNc exp(−E1/kT ) + g2n2 exp(−E2/kT )

+
2g2Ntn

2 exp(−E2/kT )

N2
c + g1nNc exp(−E1/kT ) + g2n2 exp(−E2/kT )

,(4)

whereg1 andg2 are degeneracy factors,Nc is the effective
conduction band DOS [21] andE1 is the effective trap level
for single occupancy given by

E1 = Et − Ec + δEFr + δEScr
1 , (5)

andE2 is the effective trap level for double occupancy,

E2 = 2(Et − Ec) + U + δEFr + δEScr
2 . (6)

The density of donor ionsN+

D is related to the free carrier
densityn and the dopant energy levelED through

N+

D =
NDNc exp[(ED + δEFr

1 + δEScr
1 − Ec)/kT ]

n+Nc exp[(ED + δEFr
1 + δEScr

1 − Ec)/kT ]
.

(7)
The corrections to the energy levels include a shift due to the
Frenkel effect for a screened Coulomb potential,

δEFr
1 ≈ −

4.2eEλ− kT ln (1 + 4.2eEλ/kT )

1 + 4.2
√

4πǫǫ0E/eλ
, (8)

which is an approximation of the exact numerical solu-
tion, where the Debye screening length is given byλ =
√

ǫǫ0kT/(e2n), or the Frenkel effect for a neutral trap,

δEFr = −kT ln

{

1

2
+

kT

2Ea

[

1− exp

(

−
Ea

kT

)]}

, (9)

and shift due to the screening charge around an ion site,

δEScr
n = ±

n2e2

4πǫǫ0λ
, (10)

where the+ sign is for dopant energy levels, the− sign is for
trap energy levels, andn is the number of charges on the site
(the Frenkel effect was not considered in Lambert’s theory).

The final set of equations is the temperature dependence of
the carrier mobility. [23] The total mobility is given by

1

µn

=
1

µ̄ii

+
1

µ̄op

+
1

µ̄ac

, (11)

where the three contributions are charged-impurity, optical-
phonon, and acoustic-phonon scattering, respectively. The
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mobilities depend on the screening lengthλ, which in turn
is a nonlinear function of the mobility through the free carrier
densityn.

The key difference between the full solution and prior the-
ory is the inclusion of the dopant ions,N+

D , in Eq. (1). Be-
causeN+

D has opposite charge fromNt, the turn-on voltage is
reduced from Eq. (3) to

Vc =
e(Nt −N+

D )L2

2ǫǫ0
. (12)

As the dopant sites are filled by injected carriers,N+

D de-
creases with the applied voltage, resulting in a much more
gradual increase of the current density. The dramatic effect of
dopants is demonstrated in panels b through d of Fig. 1. In
Fig. 1b, we show the I-V curves for a single trap atEc − 0.5
eV plus dopants (withND = 4.5 × 1016 cm−3) for several
values of dopant energyED from 0 to 0.37 eV belowEc.
These curves are calculated without inclusion of the Frenkel
effect. We note that carriers from the dopants provide an ini-
tial Ohmic rise, while the interplay between the dopants and
the traps slants the vertical rise in a significant way. The
slanted rise, however, does not have the smooth power law
observed in most experiments.

In Fig. 1c we compare results for traps that have either one
or two occupancies (negatively charged and doubly negatively
charged). The three curves correspond to single occupancy
and double occupancies withU = 0.23 eV and0.18 eV, re-
spectively. These curves are also without the Frenkel effect.
One feature of the double occupancy of traps is the appearance
of a wide “modified Mott-Gurney” regime between two sharp
rises corresponding toNt − ND and2Nt, respectively. The
sharp rise atNt disappears when there is double occupancy.

Inclusion of the Frenkel effect is not optional, its signifi-
cance shown in Fig. 1d. It is clear that the Frenkel effect,
mostly on the dopants with a Coulombic potential, plays an
important role: it straightens the slanted rise into a powerlaw
(the dashed black line is a pure power law and is inserted as
a guide to the eye). The net conclusion is thatit takes a self-
consistent solution of the coupled equations that govern the
occupancy of both the dopants and the traps, including the
Frenkel effect and multiple occupancies, to get a complete the-
ory that generically has the observed behavior.

The last ingredient of the theory is a tunneling current that
may be present in materials with very high defect and dopant
concentrations. The tunneling current between trap sites is
usually considered negligible because of the large distance
between traps. However, when both the deep traps and the
shallower dopants exist in large concentrations, an electron
in a deep trap can undergo thermally activated tunneling to a
dopant level similar to variable range hopping [24, 25]. Like-
wise, an electron in the shallow trap can tunnel into a deep
trap. In the presence of an electric field, such tunneling is
biased and contributes to the current. Equation (2) is then
modified to include this contribution,

Jn = µn (enE + kT∇n) + eµtntDE , (13)

wherentD = Ntf(Et)[1−f(ED)] is an effective carrier den-
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FIG. 2: Comparing the I-V data with theory for an electron-only
PPV device [26], (a) best fits using the Lampert theory with a single
trap level (blue) and a Gaussian defect DOS (red) with a smearing
of 0.1 eV; (b) present theory including the Frenkel effect (red), and
neglecting the Frenkel effect (blue).

sity. µt is an effective mobility for trapped carriers,

µt =
ed

4kT
ν exp[(Et − ED)/kT ], (14)

where d is the average distance between a deep trap
site and a dopant site, and the hopping rateν =

ν0 exp(−2d
√

−2mED/h̄) containing the attempt rateν0
which is assumed to be the typical phonon frequency and the
tunneling rate obtained from simple tunneling.

We now demonstrate the power of the new theory by ap-
plying it to fit and interpret available data. In Fig. 2 we
compare experimental data [26] on poly(phenylene vinylene),
PPV, with the best fits using the Lampert theory with a single
trap or with a Gaussian defect DOS (with a fitted smearing
of 0.1 eV) in panel a, and using the present theory in panel
b. In Fig. 2a, it is clear that a single trap energy level can-
not account for the data. A Gaussian smeared defect DOS
improves the fit significantly, but a deviation from the exper-
imental curve is evident at high voltages. Furthermore, the
attempt to incorporate an intrinsic carrier densityρ0 without
introducing a dopant densityND leads to a highly nonlinear
“Ohmic” regime. Blom et al. [26] fitted the initial rise of their
data with an Ohmic current and the power-law rise with Lam-
pert’s theory assuming an exponential defect DOS. Their fit
yielded a trap densityNt = 5× 1017 cm−3. Using this value,
one can use Eq. (3) for the critical fieldV0 to getV0 = 145
V, whereas the data exhibit a turn-on voltage at∼ 9 V and
a switch to the Mott-Gurney limit at∼ 20 V. We emphasize
that in Ref. 26, the Ohmic rise was fitted by an independent
theory of free carriers from dopants, with the density of free
carriers being an adjustable parameter. The Gaussian defect
DOS model [14] did not resolve this issue.

Using the present theory, we are able to fit the experimental
curve with a single species of traps with two occupancies and
no tunneling current. The Frenkel effect for the dopants plays
a major role in fitting the data. To demonstrate that the fit
represents internally consistent physics we examine two crit-
ical voltages. The first corresponds to all the trap sites being
filled but the dopant sites, which have a higher energy level,
are still quite empty. That is the nominal TFL turn-on voltage
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FIG. 3: Fits for a SrBi2Ta2O9 polycrystalline film [28]. (a) Solid
curves are fits using a temperature dependent dielectric constantǫ;
(b) effective mobility for the tunneling current in the Ohmic regime
as a function of temperature; (c) temperature dependence ofthe fitted
ǫ (open red circles), the filled blue circles are from Ref. 29; (d) noise
power using two sets of parameters, with (red) and without (blue)
inter-trap tunneling current. The parameters without tunneling can
only fit 450 K but not other temperatures.

at T = 0 K and is given by Eq. (12). Using the values of
Nt = 8.1× 1016 cm−3 andND = 4.4× 1016 cm−3 extracted
from the fit, we findVc = 11 V, in agreement with the data.
The second voltage of interest, given by Eq. (3), is when the
TFL curve turns over into the Mott-Gurney law. From the fit-
tedNt, Eq. (3) yieldsVTFL = 24 V, also in agreement with
Fig. 2.

It is clear thatwithin the TFL region the injected carriers
are filling the dopant sites. Thus, the slope of the I-V curve
in the TFL region is determined by the dopant concentration.
Furthermore,higher dopant concentration leads to a smaller
turn-on voltage. This feature has been observed, [13, 27] but
has not been properly accounted for in the SCLC theory.

The Frenkel effect is crucial for the appearance of a power-
law rise at the TFL. When the dielectric constant of the mate-

rial is large, the Frenkel effect is diminished by screening, and
the the I-V curves do not exhibit a straight power-law rise.
One such example is the set of temperature-dependent data
measured for a SrBi2Ta2O9 polycrystalline film [28] which
shows a strong temperature-dependent TFL region and onset
voltage. These data offer an opportunity to test the tempera-
ture dependence of SCLCs predicted by the present theory.

Figure 3a shows a fit of the above data using the present the-
ory. The fit is quite satisfactory. In this case, the initial Ohmic-
like rise is dominated by the tunneling current and is not ex-
actly linear, with an activation energy, extracted from themo-
bility plot in Fig. 3b, equal to the trap-to-dopant energy-level
difference. The consistency of the fit is also demonstrated in
Fig. 3c, where the temperature dependence of the fitted di-
electric constant is compared to another experiment [29].

To further corroborate the presence of tunneling currents,
we consider the voltage dependence of the noise power. Al-
though Ref. 28 did not measure this, other measurements of
samples exhibiting SCLC indicate that the noise power peaks
slightly above the onset voltage [11]. Without the tunneling
current between traps and dopant sites, the noise power is high
and approximately constant at low voltages, as shown by the
blue curve in Fig. 3d. The noise is significantly suppressed if
the tunneling current dominates the Ohmic regime, shown as
the red curve in Fig. 3d.

In conclusion, we have shown that a proper SCLC theory
can be formulated only if the interplay between dopants and
deep traps is considered and the Frenkel effect is included.
Recognition of the role of dopants in the SCLC phenomenon
allows the possible realization of Rose’s vision of using the
SCLC to probe deep-trap levels in semiconductors and insu-
lators. In particular, one can design experiments with vari-
ous concentrations of dopants, to “stretch” the TFL region to
different voltage ranges in order to provide multiple curves
for the study of a single deep trap level. Noise power mea-
surements are useful for identifying the nature of the diffusive
current at low voltages.
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