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Near a critical point, the time scale of thermally-induced fluctuations diverges in a manner deter-
mined by the dynamic universality class. Experiments have verified predicted 3D dynamic critical
exponents in many systems, but similar experiments in 2D have been lacking for the case of con-
served order parameter. Here we analyze time-dependent correlation functions of a quasi-2D lipid
bilayer in water to show that its critical dynamics agree with a recently predicted universality class.
In particular, the effective dynamic exponent zeff crosses over from ∼ 2 to ∼ 3 as the correlation
length of fluctuations exceeds a hydrodynamic length set by the membrane and bulk viscosities.

PACS numbers: 64.60.Ht, 68.35.Rh, 87.16.D-, 87.16.dt

Lipids self-assemble in water to form sheets that are
two molecules thick, within which the lipids are free to
diffuse. When composed of several lipid species these
two-dimensional (2D) liquid membranes can demix into
coexisting liquid phases, termed Lo and Ld, over a range
of temperatures and compositions, and can exhibit criti-
cal behavior [1–4]. Among 2D critical phenomena, com-
position fluctuations in membranes are rather unique in
that their large sizes and long decay times are accessible
to optical microscopy. For example, Fig. 1 and supple-
mentary movies show a vesicle (a spherical membrane
shell) in which correlated regions reaching 10 µm persist
for seconds [5]. Direct visualization of these equilibrium
fluctuations has recently been used to show that static

critical exponents for lipid membranes are consistent with
the 2D Ising universality class [3, 6]. Here we exploit the
ability to visualize dynamics of these fluctuations to ex-
amine for the first time the dynamic critical phenomena
in this system. We find that although the statics are 2D
phenomena, the critical dynamics are modified by hydro-
dynamic coupling to the surrounding 3D fluid.

Static critical exponents, which describe how observ-
ables such as correlation length vary as the critical point
is approached, are identical for all systems in a given uni-
versality class, independent of their detailed microscopic
physics [7, 8]. For example, although membranes have
a conserved order parameter and ferromagnets do not,
membranes exhibit static exponents ν = 1.2 ± 0.2 and
β = 0.124± 0.03, consistent with the expected 2D Ising
values of ν = 1 and β = 1/8 [3]. Results in plasma
membrane vesicles are also consistent with 2D Ising ex-
ponents ν = 1 and γ = 7/4 [6]. Systems that are in
the same static universality class can fall into different
dynamic universality sub-classes determined by conser-
vation laws constraining how fluctuations dissipate [9].
The critical exponent z for each dynamic subclass quan-
titatively describes the scaling of the dynamics. It re-
lates how the correlation time τs diverges as tempera-
ture T approaches the critical temperature Tc, such that
τs ∝ |(T − Tc)/Tc|

−νz
where ν is the static critical ex-

ponent. Experiments measure an effective exponent zeff

that approaches z as T → Tc and ξ → ∞. Dynamic
sub-classes relevant to 2D systems with conserved order
parameter are notable equally for their wealth of theo-
retical predictions [9–11] and for the lack of experiments
that systematically test those predictions.

Only a few previous measurements of dynamic critical
exponents in 2D systems exist. Most experiments have
been conducted on magnetic films. Using ferromagnetic
films of ∼ two monolayers, Dunlavy and Venus found
νz = 2.09 ± 0.06, with ν = 1 [12]. Fewer experiments
have been conducted on systems with conserved order
parameter. Careful attempts to measure z were made in
thin films of lutidine and water, but were unable to reach
the 2D critical regime [13]. In plasma membrane vesicles
from living rat basophil leukemia cells, fluctuation decay
times were reported to be consistent with z ≈ 2 [6].

Here we obtain zeff as T approaches Tc in a lipid mem-
brane surrounded by water and compare to theory re-
cently developed for an analogous system: a 2D critical
binary fluid embedded in a non-critical bulk fluid [10, 11].

FIG. 1: Fluorescence micrographs of vesicles of diameter 200
µm. (A) As temperature changes from T > Tc (T = 31.25◦C,
Tc ≈ 30.9) to T ∼ Tc (T = 31.0◦C) fluctuations in lipid
composition grow. Below Tc, at T = 28◦C, domains appear.
Scale bar = 10 µm. (B) A movie of composition fluctua-
tions within a vesicle above Tc. Large fluctuations persist for
seconds (white arrows), whereas small ones disappear by the
next frame (black arrow). Scale bar = 20 µm.
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This new theory incorporates three essential features of
lipid bilayer dynamics: conserved order parameter, col-
lective hydrodynamics, and hydrodynamic coupling be-
tween the bilayer and bulk [10, 11]. Inclusion of only
the first feature within an Ising model yields Model B,
in which composition fluctuations dissipate through dif-
fusion of microscopic constituents [9]. 2D Model B pre-
dicts z = 4 − 2β = 3.75 [9], and numerical schemes give
z = 3.80 and z = 3.95 [14, 15]. Inclusion of the first
two features, such that collective hydrodynamic motion
replaces single particle diffusion as the dominant mecha-
nism of order parameter relaxation, yields Model H. 2D
Model H with coupling to only 2D momentum modes
predicts z ≈ 2 [9]. Inclusion of all three features yields
Model HC, where HC denotes hydrodynamic coupling of
the membrane to the bulk. This new version extends
Model H to account for modes in both the 2D membrane
and the 3D bulk fluid, with the result that z = 3 [10, 11].

Intuition for the role of the coupling between the mem-
brane and bulk within Model HC can be gleaned from an
approximation for 3DModel H by Kawasaki [16]. Critical
fluctuations are treated as spherical inclusions of diame-
ter ξ that diffuse a distance ξ to equilibrate [9, 16–18]. As
such, correlation time varies as τ ∼ ξ2/D(ξ), where D(ξ)
is the inclusion’s diffusion constant in a non-critical fluid.
In 3D, D(r) ∼ 1/r, where r is the inclusion’s radius. Us-
ing τ ∝ |(T − Tc)/Tc|

−νz
∝ ξz yields z ≈ 3. A more

sophisticated theoretical treatment gives z = 3.065 [18].
Applying the same reasoning to 2D Model H, in which
diffusion of inclusions has only a logarithmic dependence
on r, yields z ≈ 2. Again, more sophisticated treatments
produce similar values; see [5] for more detail. This argu-
ment can be extended to predict the value z should take
in a 2D critical system embedded in a bulk fluid. Clas-
sic work by Saffman and Delbrück examined diffusion of
an inclusion in a 2D liquid of viscosity η2D immersed in
a bulk fluid of 3D viscosity η3D, where hydrodynamic
length Lh = η2D/η3D is an important parameter [19, 20].
When r ≫ Lh, dissipation is primarily into the bulk and
D(r) ∝ 1/r as in 3D Model H. When r ≪ Lh, dissi-
pation is primarily into 2D hydrodynamic modes and
D(r) ∝ ln(Lh/r), similar to 2D Model H. Two groups
have independently noted that when Lh is considered,
zeff for a 2D critical binary fluid embedded in bulk liquid
crosses over from zeff ≈ 2 when ξ ≪ Lh to zeff ≈ 3 when
ξ ≫ Lh [10, 11].

The next four paragraphs demonstrate that experi-
mental results here are in excellent agreement with the
recent predictions of Model HC, namely that zeff crosses
over from ∼ 2 to ∼ 3 as T → Tc and ξ → ∞. Further
experimental details follow the results.

A time series of the order parameter, m(r, t), was
extracted from videos of vesicles collected via fluores-
cence microscopy. For membranes, m(~r) is the deviation
from average composition as reported by an image’s pixel
grey scales. A time-correlation function C(r, τ), and its

Fourier transform in space, the structure factor S(k, τ),
were calculated for each wavenumber k.
Curves of S(k, τ)/S(k, 0) vs kzeffτ were plotted for

a range of zeff values. Fig. 2B illustrates how the
correct zeff was identified: for a single value of zeff,
all experimentally-measured curves at different k values
(Fig. 2A) collapsed most fully onto a single curve, here at
zeff = 2.8±0.2. Fig. 3A shows zeff values extracted in this
manner from data over the entire measurable range of
correlation lengths. In Fig. 3A, zeff rises from from near
2 to near 3 as T → Tc, in accord with Model HC [10, 11].
Fig. 2C-D validates this method by showing that stan-

dard simulations of Model B Kawaski dynamics that are
blurred to mimic experimental limitations and then an-
alyzed in the same way as the experimental data give
z = 3.6 ± 0.2 in agreement with the expected value of
z = 3.75 (see [5] for details). Simulations were run on
a 400x400 bi-periodic square lattice. Blur was achieved
by averaging snapshots over 200 consecutive Monte Carlo
sweeps, leaving a break of 800 sweeps without snapshots,
and repeating the process, which reproduced the effects
of a camera shutter opening for 100 ms of every 500 ms.
Excellent agreement between predicted and measured

structure factors provides even stronger evidence that
Model HC describes critical dynamics in membranes. In-
aura and Fujitani give a prediction for the entire time-

FIG. 2: (color online). (A and B) Rescaling experimental data
closest to Tc by kzτ collapses all curves to zeff = 2.8, consistent
with Model HC. Normalized structure factors are shown for
ξ = 13 ± 2.2 µm and three video rates: 10 frames per second
(fps, solid lines), 2 fps (short dash), and 0.5 fps (long dash).
Colors denote wavenumbers k = 1.1 µm−1 (top curve, blue)
to 3.0 µm−1 (bottom, red). (C and D) Simulations solely
to verify technique. Structure factors of Kawasaki dynamics
at T = Tc blurred in time to mimic experimental limitations
collapse at zeff = 3.6 ± 0.2, consistent with z = 3.75 for 2D
Model B. Colors range from k = 1.1 µm−1 to 3.1 µm−1. Insets
show collapses used to determine bounds for zeff and failure
of collapse at zeff = 3.
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dependent structure factor S(k, τ) for Model HC, tak-
ing as input η2D, η3D, and a mean-field approxima-
tion for the static structure factor, S(k, 0) [11]. The
ratio S(k, τ)/S(k, 0) and its decay time will be com-
pared between theory and experiment below. A fea-
ture of S(k, τ)/S(k, 0) is that it needs no correction
due to the microscope’s point spread function. Ratios
of S(k, τ)/S(k, 0) in the critical Ising model and in the
mean-field approximation are similar, and do not depend
strongly on correlation length, as will be shown in a fu-
ture manuscript.

The HC model with Lh = 6 µm fits the data over all
experimentally accessible wavenumbers. Fig. 3C shows
the ratio S(k, τ)/S(k, 0) at wavenumbers 1.1 µm−1 and
3.8 µm−1. Fig. 3B shows decay times, defined as when
S(k, τ)/S(k, 0) = e−1. All other models are excluded.
Fig. 3A rules out 2D Model H because the measured zeff
rises close to 3, well above the predicted value of 2 for
2D model H. Fig. 3B-C rules out 2D Model B because
measured decay times are orders of magnitude shorter
than the model predicts.

Developing Model HC to completely describe mem-
branes requires determining only membrane viscosity,

FIG. 3: Data is in excellent agreement with Model HC. (A)
Filled symbols: Dynamic exponent zeff from scaling collapse
of experimental data as in Fig. 2A-B. Open symbols: Model
B simulation in which zeff approaches ∼ 3.75. (B) Decay time,
defined as when S(k, τ )/S(k, 0) = e−1. Large symbols indi-
cate wavenumbers 1.1 and 3.3 µm−1. (C) Normalized struc-
ture factors S(k, τ )/S(k, 0). In panels B and C, experimental
data is denoted by symbols, 2D Model B by a grey line, Model
HC (HC) with Lh = 6 µm by a solid line and Model HC with
Lh = 0 by a dashed line.

η2D, as an input since the viscosity of water, η3D, is
known. Fig. 3C indicates that η2D must be nonzero. In
the small k limit, Inaura and Fujitani [11] predict a struc-
ture factor that depends only on η3D. This parameter-
free prediction, equivalent to taking η2D = 0, underesti-
mates time decays by a factor of 5 − 10 (dashed curve,
Fig. 3C). Setting the unknown η2D (or equivalently, Lh

= η2D/η3D) as a single fit parameter within Model HC
over the entire measured range of k yields Lh = 6.0 ±
1.5 µm. This value is within the range found by tracking
diffusion of liquid domains across vesicle surfaces [21, 22]
and is similar to values (2-4 µm) found by other methods,
albeit for different lipid mixtures [23, 24]. An essentially
equivalent method of finding Lh is to calculate the Model
HC structure factor using the formalism of Hohenberg
and Halperin [9], and to thereby extend Model HC to
incorporate Ising rather than mean field statics. Within
experimental uncertainty, this modest change has no ef-
fect (Lh = 5.5 ± 1.5 µm). This and other extensions of
Model HC, each leading to small corrections to the ratio
S(k, τ)/S(k, 0), will appear in a future manuscript.

Using lipid bilayers to measure critical exponents in-
troduces both complexities and advantages, which are
outlined further in [5]. The first complexity is that the
simplest bilayers that exhibit critical phenomena contain
ternary lipid compositions. Strictly speaking, the ternary
mixtures used here pass through isothermal critical mix-
ing (plait) points rather than critical (col) points. A
feature of 2D systems is that, unlike in 3D systems, no
measurable change in critical exponents arises from the
presence of a third component. Briefly, a small correc-
tion to scaling arises in systems that contain a third com-
ponent at fixed composition rather than fixed chemical
potential. Hence, Tc changes, and many effective critical
exponents are renormalized by a factor of 1/(1 − α), as
discovered by Widom [25] and generalized by Fisher [26].
For the 2D Ising case here, where α = 0, theory predicts
only a logarithmic correction to singular behavior [25].
The second complexity is that when T is changed (as re-
quired in previous studies to find ν and β [3], but not
required here), a bilayer with fixed composition does not
necessarily follow a path with constant 〈m(~r)〉 [27]. How-
ever, since membrane phase diagrams are relatively sym-
metric over the range of temperatures probed and since
measured values of ν and β were consistent with the 2D
Ising model [3], deviations from a path of constant 〈m(~r)〉
are likely minor.

The first advantage of using lipid bilayers is that it
avoids challenges of other systems. For example, lipid
monolayers have confounding effects of dipole interac-
tions, and the task of achieving simultaneous tunability
and stability of surface pressure in a stationary mono-
layer is formidable. The second is that correlation
lengths are large, partly because ξ0 within the relation
ξ = ξ0 |(T − Tc)/Tc|

−ν is on the order of the length of a
lipid molecule rather than of an atom. Separately, there
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is an advantage in using 2D (or quasi-2D) experimental
systems over 3D systems. The critical region is larger
in 2D liquid-liquid critical systems than in analogous 3D
ones, partially due to differences between critical expo-
nents in 2D vs 3D Ising classes (ν = 1 and β = 1/8 in
2D vs ν ≈ 0.630 and β ≈ 0.325 in 3D [7]).

Methods used to produce the results in Fig. 3 fol-
low. To optimize movie quality, vesicles were spherical,
free-floating, unilamellar, of radius>100 µm, and electro-
formed by standard methods detailed in [3]. Vesicles were
formed from mixtures along a line of plait points centered
at 30% diphytanoylphosphatidylcholine (DiPhyPC), 20%
dipalmitoylphosphatidylcholine (DPPC) and 50% choles-
terol (chol), with 0.5% fluorescent dye Texas red di-
palmitoylphosphatidylethanolamine (TR-DPPE). Only
vesicles near a plait point were analyzed, identified by
micron-scale composition fluctuations visible over the
largest observed range of temperatures (> 1◦C) and by
equal areas of coexisting liquid phases below Tc. Each
vesicle analyzed fell on a slightly different plait point, so
each had a slightly different Tc [28].

Images of membranes were captured via an epifluo-
rescence microscope with a temperature-controlled stage
and a mercury lamp source. Light exposure was mini-
mized by employing a SmartShutter (Sutter Instrument,
Novato CA) controlled through NIS-Elements (Nikon,
Melville NY) and by recording movies for at least two
different frame rates at each temperature. Each frame
was exposed 100-150 ms, with the shutter open 10 ms
before and after exposures. Movies were collected from
high to low temperature in steps of ∼ 0.2◦C, equilibrated
for at least 2 min. No consistent trend in intensity was
observed throughout each movie, implying that the low
light procedures used here eliminated significant photo-
bleaching. To correct for lamp flickering, mean brightness
was subtracted from each frame. Spatial intensity gra-
dients due to other vesicles outside the focal plane were
removed by a long wavelength filter of 100 pixels.

Images were analyzed via custom MATLAB code (The
Mathworks, Natick, MA). Vesicles were tracked and cen-
tered to remove drift (typically < 25µm/min). By eye,
features exhibit no net translation, which implies no sig-
nificant vesicle rolling. No difference in mean intensity or
noise between pixels at edges vs. centers of cropped im-
ages was observed, implying that vesicles are so large that
membrane curvature over images can be neglected [3].
Curvature corrections in smaller vesicles were minor [6].

The structure factor S(k, τ), the Fourier transform in
space of the time-dependent correlation function, was
found as previously described [3, 29]. Briefly, a dis-
crete transform was performed for each movie image,
with a buffer of zero values to correct for image non-
periodicity. Transformed images were divided by the mi-
croscope’s finite point spread function to yield m(~k, t).
The dynamic structure factor was generated at each τ

by S(~k, τ) = 1/2
〈

m(~k, t)m(~k, t± τ)
〉

, where m(~k, t) is

the complex conjugate of m(~k, t) [30]. S(~k, τ) was then
radially averaged to yield S(k, τ).

Structure factors were employed in two ways. First,
correlation lengths, ξ, were found by analyzing structure
factors at τ = 0. Specifically, a one-parameter fit for ξ
was made until all data for k(7/4)S(k) vs. kξ collapsed
onto the single curve for the exact numerical solution of
the 2D Ising model [3, 31]. Second, effective dynamic
scaling exponents, zeff, were found by collapsing curves
of S(k, τ) (see results above and [5] for details). Collapse
works because, according to the dynamic scaling hypoth-
esis, structure factors within the scaling regime can be
written in the form S(k, τ, ξ) = k−2+ηΩ((kξ)−1, kzτ)
where Ω is a universal function of (kξ)−1 and kzτ [9].
Near Tc, where (kξ)

−1 is near 0, curves of S(k, τ)/S(k, 0)
vs kzτ collected over many wavenumbers k should col-
lapse via a one-parameter fit to produce the correct
value of z. Here, Ω can also depend on kLh, so that
S(k, τ, ξ) = k−2+ηΩ((kξ)−1, kzτ, kLh). For collapses in
Fig. 2A-B, zeff refers to an effective z value which varies
as ξ/Lh is changed. In Fig. 3B-C, comparing the entire
form of the structure factor to theoretical predictions di-
rectly verifies the value of z as well as the dependence of
the universal function on kLh and kzτ .

Summary: Directly imaging composition fluctuations
enables measurement of effective dynamic critical ex-
ponents of a lipid membrane embedded in bulk wa-
ter. Experimental structure factors are in excellent
agreement with an emerging theoretical prediction in
which 3D hydrodynamics affects critical slowing down
in a 2D membrane. The theory invokes hydrodynamic
coupling between the membrane and bulk fluid such
that Ising degrees of freedom are coupled to momentum
modes [10, 11]. As predicted, a shift in zeff from ∼ 2 to
∼ 3 as T → Tc and ξ → ∞ is observed.
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