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Abstract: 

We use linear stability theory and numerical simulations to show that spontaneous phase 

separation in elastically coherent solids is fundamentally altered by the presence of free surfaces. 

Due to misfit stress relaxation near surfaces, phase separation is mediated by unique surface 

modes of spinodal decomposition that have faster kinetics than bulk modes and are unstable even 

when spinodal decomposition is suppressed in the bulk. Consequently, in the presence of free 

surfaces, the limit of metastability of supersaturated solid solutions of crystalline materials is 

shifted from the coherent to chemical spinodal.   

 
 
Spinodal decomposition is a ubiquitous phase separation process leading to the spontaneous 

formation of domain structures with distinct chemical compositions in diverse systems ranging 

from metallic alloys to polymers to liquids. The seminal work of Cahn and Hilliard [1,2] laid 

down the theoretical foundation for understanding the mechanism of this important phenomenon 

in bulk materials. On the phase diagram of a binary system with a miscibility gap, there is a limit 

of metastability inside which the solid solution becomes unstable against infinitesimal 



composition fluctuations and spontaneously decomposes into a two-phase structure. Such a 

process, known as spinodal decomposition, leads to periodic composition variations of a definite 

wavelength that is governed by the competition between the destabilizing chemical free energy 

and the stabilizing composition gradient energy as well as the elastic energy that can arise due to 

the coupling of composition and stress. When phase separation does not generate internal stress 

(e.g. in liquids and some glass), the metastability limit of bulk solid solution is defined by the 

chemical spinodal within which the second derivative of the chemical free energy density f 

against composition c is negative (∂2 f / ∂c2<0). However, spinodal decomposition in most 

crystalline solids gives rise to coherency stress due to the variation of lattice parameter a with 

composition: ε = d ln a / dc ≠ 0 . The incurred elastic energy suppresses phase separation and 

shifts the metastability limit to the coherent spinodal curve at lower temperatures on the phase 

diagram, as illustrated in Figure 1. Cahn [2] showed that the coherent spinodal is defined by the 

condition ∂2 f / ∂c2 + 2ε 2Y '= 0, where Y ' is an elastic constant. The supercooling from the 

chemical to the coherent spinodal can vary from several to several hundred Kelvins in different 

systems. 

     In this Letter, we address the fundamental question: how does the presence of free surfaces 

alter spinodal decomposition in elastically coherent solids? Because internal stress can be 

relieved in the proximity of free surfaces, intuition suggests that coherent spinodal 

decomposition should develop more easily near a surface than in the bulk. This scenario is 

supported by several recent phase-field simulations [3-5] that show preferential domain 

formation along surfaces of thin films during decomposition. Domain structure of similar 

morphology has also been seen in experiments [6, 7]. However, despite a vast body of research 

on phase separation in crystalline solids in the literature (e.g. see ref. 8), how surfaces influence 



spinodal decomposition is not quantitatively understood beyond this intuitive picture, thereby 

making it difficult to interpret experimental observations. Here we use linear stability theory to 

show unambiguously that there exists unique surface modes of coherent spinodal decomposition 

(SCSD) that develop under conditions where spinodal decomposition does not occur in the bulk. 

A major finding is that the unstable region of the crystalline solid solution is not bound by the 

coherent but the chemical spinodal when free surfaces are present in the system, and SCSD can 

become the dominant phase separation mechanism in the region between the chemical and 

coherent spinodals. We expect SCSD to be especially important in nanostructures, in which the 

surface area to volume ratio is very high and bulk spinodal decomposition may even be 

suppressed [9,10].  

     It is important to distinguish between SCSD and other surface-mediated spinodal 

decomposition phenomena where the surface energy plays a dominant role. Spinodal 

decomposition may be initiated at a surface wall when one component of a binary mixture is 

preferentially attracted to the wall [11], or when the surface energy favors demixing [12]. In a 

more complex setting, spinodal decomposition localized at an alloy-electrolyte interface has been 

invoked to explain nanoporosity formation during dealloying [13]. In contrast, the surface 

localization in SCSD is due solely to stress relaxation; it is independent of the surface energy 

which neither drives the instability nor selects its wavelength. Hence, SCSD also differs 

fundamentally from other types of stress-driven surface instabilities [14] where the surface 

energy is instrumental in determining the pattern scale. 

     We consider a two-dimensional semi-infinite solid under plane strain condition with a flat 

surface at z=0 and the x axis parallel to the surface. The solid has two components A and B, and 

c(x,z) is the local molar composition. Stress can be represented by the Airy stress function 



Γ(x, z): σ xx = ∂z
2Γ , σ zz = ∂x

2Γ , σ xz = −∂x∂zΓ . The system is assumed to be isotropic and 

elastically homogeneous, and its stress-free strain due to composition variation follows Vegard’s 

law: εij
* (c) = ε0cδij  (i, j = x, z), where ε0 is the misfit strain between pure A and B. We express the 

system’s free energy as F = [ f (c)+ felas +κ / 2 ∇c( )2 ]∫∫∫ dV + γ dA∫∫ , where f (c) is the 

chemical free energy density, felas =1/2σij (ε ij −ε ij
* (c)) the linear elastic energy, κ the gradient 

energy coefficient, and γ the surface energy. We assume γ to be independent of composition and 

stress, and neglect the surface energy effect that is shown in ref. 15 to be negligible in 

comparison to the elastic and chemical energies associated with a small composition modulation. 

The evolution of the composition field follows the Cahn-Hilliard equation [2] 

        (1) 

where M is the mobility, the prime denotes a derivative,  and 

. The elasticity equilibrium is governed by  

Δ2Γ = − Eε0

1−ν 2 Δc           (2) 

where E and ν are the Young’s modulus and Poisson ratio, respectively. To analyze the stability 

of a spatially uniform state c = c0 against small perturbations, we linearize the equations about 

that state, i.e. f '(c) ≈ f '(c0 ) + f ''(c0 )(c − c0 ) , define the scaled fields φ = c − c0  and Φ = Γε0 /κ , 

and normalize the equations with length unit l0 = (1−ν 2 )κ / Eε0
2  and time unit t0 = l0

4 / Mκ . 

After linearization and normalization, Eqs. 1-2 become  

∂t + Δ(Δ + k0
2 −1)⎡⎣ ⎤⎦φ = 0          (3) 

Δ2Φ + Δφ = 0             (4) 



Note that Φ  is eliminated from Eq. 3 using Eq. 4. The governing equations are complemented 

by boundary conditions at the surface,  

∂z Δ + k0
2( )φ + ΔΦ⎡

⎣
⎤
⎦ z=0

= ∂zφ z=0
0

        
(5,6) 

∂x
2Φ

z=0
= ∂x∂zΦ z=0

= 0          (7,8) 

Eqs. 5 and 6 impose the conditions of zero concentration flux and gradient across the surface as 

employed in ref. 3-5 for composition-independent surface energy, and Eqs. 7 and 8 are the 

traction-free boundary conditions. The only parameter appearing in Eqs. 3-8, 

k0 = − f ''(c0 ) / Eε0
2 / (1−ν 2 )⎡⎣ ⎤⎦ , characterizes the strength of the chemical driving force of phase 

separation relative to the elastic energy; k0=1 and 0 define the bulk coherent and chemical 

spinodal curves on a phase diagram, respectively. When a system resides within the coherent 

spinodal, i.e. k0>1, the amplitude of a bulk plane-wave composition perturbation of the form 

φ ∝ exp(ik ⋅ r +ω bulkt) either grows or decays with time as exp(ω bulkt) , where the amplification 

factor ωbulk is a function of wave vector k: . A bulk perturbation is 

unstable if its k is below a critical value kcrit
bulk = k0

2 −1 , which approaches zero at the coherent 

spinodal. The spinodal decomposition kinetics in the early stage is dominated by the fastest-

growing mode with k= km ≡ (k0
2 −1) / 2  and ω=ωm ≡ km

4 .   

       Let us now analyze the stability of a supersaturated solid solution against a surface-localized 

composition perturbation of the form φ ∝ exp(ikx − qz +ωt) , which is periodic parallel to the 

surface but decays exponentially into the bulk (Re[q]>0). Substituting this ansatz for � into Eq. 

3, one obtains q2 = k2 − km
2 ± i ω −ωm . Depending on the value of ω, the decay constant q 



admits different solutions, which results in different forms of surface-mode perturbations [15]. 

The most important ones are: 

i) For ω> ωm, q is complex; the composition and stress fields of the surface modes, whose 

expressions are given in ref. 15, have an “underdamped” form that exhibits spatially decaying 

oscillation in the z direction.   

ii) For ω< ωm, q is real; the surface perturbations are free of oscillation in the z direction and are 

referred to as “overdamped” with the expressions given in ref. 15.  

Six unknown constants, denoted as αi (i=1,2) and βj (j=1-4), appear in the solutions of � and Φ 

for the above surface eigenmodes, to be determined from the initial and boundary conditions. By 

substituting φ and Φ into Eqs. 3-8, we find that α1,2 and β1-4  must satisfy six linear equations, 

which in matrix form are M k,ω;k0( ) α1,α2,β1,β2,β3,β4[ ]T
= 0 [15]. As a necessary condition to 

have non-trivial surface modes, the determinant of the coefficient matrix M must equal zero, i.e. 

Det[M]=0. This condition implicitly determines the dispersion relation ω=ωsurf(k) for surface-

mode perturbations, which is controlled by the single parameter k0 that encapsulates the effects 

of all thermodynamic and materials parameters. Figure 2 shows the calculated ωsurf(k) curves at 

several k0 values, which represent different regions on the phase diagram that have distinct phase 

separation behaviors:  

 

1) Within the bulk coherent spinodal (k0>1), spinodal decomposition occurs via both surface and 

bulk modes but the surface mode has a larger growth rate. As illustrated in Figure 2(a) for k0

=1.1, all surface perturbations with k<kb are underdamped and have larger growth rates than the 

most unstable bulk mode with an amplification factor ωm . The overdamped section (ω<ωm) of 

the ωsurf(k) curve connects smoothly to the underdamped section at k=kb where ω surf (kb ) = ωm . 



The fastest-growing surface mode, , occurs at a non-zero wave vector kmax
surf . By 

Taylor expansion of Det[M] around ω=0, we found that the root of ωsurf(k) is determined by  

k
km

2 k2 + km
2 + 2km

4( ) k2 − 2km
2 − k3⎡

⎣
⎤
⎦= 0        (9) 

It is straightforward to derive from Eq. 9 that the critical wave vector of the surface modes, kcrit
surf , 

is smaller than kcrit
bulk. These results unequivocally confirm that the stress relaxation near free 

surfaces enhances the instability of finite-wavelength perturbations and results in faster phase 

separation kinetics than in the bulk. In the long wavelength limit , however, the real part of 

q of underdamped modes approaches zero. The perturbation thus extends into the bulk in this 

limit and behaves like a bulk mode with ωsurf
 → ωm [15].  

 

2) In between the coherent and chemical spinodals (0< k0<1), surface-mode perturbations with 

k < kcrit
surf  continue to be unstable even though bulk spinodal decomposition is now suppressed, as 

shown in Figure 2(a) for k0=0.85. However, different from the case of k0>1, the surface modes 

now become overdamped in the vicinity of k=0 and ωsurf  approaches zero upon k→0. The solid 

is thus metastable against long-wavelength overdamped modulations, which is an important 

distinction between overdamped and underdamped surface modes. This region can be further 

divided into two subregions [15]. When 1>k0> k0
*  ≈ 0.7246, surface perturbations including the 

most unstable mode are underdamped at intermediate wavelengths kb2<k<kb1 and overdamped 

otherwise. For k0
*

 > k0 >0, however, the underdamped modes cease to exist and all surface 

perturbations assume the overdamped form, see Figure 2(b). The boundary line separating the 

two subregions, defined by k= k0
* , is plotted in Figure 1. When the system moves from the 



coherent towards the chemical spinodal (k0=0), kcrit
surf  is decreased and fewer surface modes are 

unstable. Upon kcrit
surf  reaching zero, the crystalline solid becomes metastable against any surface-

mode perturbations. Mathematically, this happens when k=0 becomes a double root of ωsurf(k), 

which is found from Eq. 9 to occur only at k0=0, i.e. exactly on the chemical spinodal. Therefore, 

the chemical spinodal is also the surface coherent spinodal, which is the metastability limit of 

supersaturated crystalline solid solution with free surfaces. By expanding Det[M] in series 

around k0=ω=k=0, we find that ωsurf(k) in the limit k0→0 has the asymptotic expression 

4k 2 (k0
2 − 2k 2 ) / 3, or 4Mk2[− f ''(c0 )− 2κk2 ] / 3 in dimensional units. Remarkably, this result 

shows that the kinetics of SCSD becomes asymptotically independent of elastic energy when 

approaching the chemical spinodal. This is because upon k0→0, the unstable overdamped surface 

perturbations have diverging wavelengths. Under this limit, the incurred elastic energy makes an 

increasingly small contribution relative to the chemical and gradient energies and its effect on 

SCSD diminishes asymptotically. Despite being stress independent, ωsurf(k) upon k0→0 is 

different from the dispersion relation of stress-free chemical spinodal decomposition in the bulk, 

ω chem (k) = k2 (k0
2 − k2 ). Such difference stems from the different spatial composition variations of 

surface and bulk chemical eigenmodes.  

 

3) In between the chemical spinodal and the miscibility gap (pure imaginary k0), ω surf (k) ≤ 0 for 

all k (e.g. k0=0.5i  in Figure 2(a)), and the system is metastable against infinitesimal composition 

perturbations.  

     Additional physical insights into surface modes can be obtained by analyzing the dependence 

of the critical wavelength in physical units, ΛC ≡ 2πl0 / kcrit
surf , on the chemical driving force 



measured by k0. ΛC  can be computed analytically in two limits. First, at the bulk coherent 

spinodal (k0=1), the solid is marginally stable against bulk fluctuations but has unstable surface 

modes with a critical wavevector kcrit
surf = 3 / 2 [15], yielding 

 ΛC (k0 = 1) ≡ ΛC
* = 4π (1−ν 2 )κ / 3Eε0

2                                                    (10) 

Eq. (10) makes the key prediction that in the vicinity of the bulk coherent spinodal, the 

characteristic length scale of surface modes is solely determined by the misfit strain, elastic 

modulus, and coefficient κ that determines the chemical energy cost of compositional 

modulations. For typical parameter values, this length is on the nanoscale as shown below. 

Second, the asymptotic form of ω surf (k)  for k0<<1 implies that the critical wavelength diverges 

as ΛC (k0 ) ≈ 3 / 2ΛC
* / k0  near the chemical spinodal. In between the two limits, the simple 

formula, ΛC (k0 ) ≈ ΛC
* (3− k0

2 ) / 2k0
2 , which interpolates between the above asymptotically exact 

results for k0=1 and k0<<1, gives a remarkably good prediction of the critical wavelength over 

the whole range 0 < k0 ≤1 as shown in Fig. S1 [15]. This formula generally predicts how to tune 

the wavelength of surface modes by varying thermodynamic conditions and material properties.  

     We confirmed the linear stability analysis results with numerical simulations by solving Eqs. 

1-2 with free-surface boundary conditions. The simulation domain has two free surfaces at z=0 

and 200 nm that are sufficiently separated apart, and periodic boundary condition is applied in 

the x direction. The system is modeled as a regular solution, i.e., 

f (c) = a[c lnc + (1− c)ln(1− c)]+ bc(1− c) , with the following parameters: a = 0.19T  J/cm3 (T - 

temperature in K), b=274 J/cm3, κ=5×10-12 J/cm, E=100 GPa, ν=0.25, ε0=0.05, and M=10-12 

cm5/J·s. For those parameters, ΛC
* =9.9 nm. Figure 1 is the phase diagram for such a model 

system. Figure 3(a) shows the snapshots of the decomposition process from an initial state at c0 = 



0.5 and T=298K plus a small random fluctuation, corresponding to a dimensionless k0=1.1 

(Figure 2(a)). Consistent with the theory, phase separation first occurs in the surface region and 

produces a lateral domain pattern aligned with the surface. Only at much later times does an 

isotropic domain structure emerge from bulk spinodal decomposition. In Figure 3(b), the 

amplitude of the dominant surface composition wave, Amax
surf (t), displays exponential growth with 

time at the early stage that agrees well with the theoretically predicted exp(ωmax
surf t). Deviation of 

Amax
surf (t) from theory becomes pronounced at later times due to the nonlinear term in Eq. 1. We 

calculated ωmax
surf  numerically as a function of k0 from a series of simulations at different initial 

states. As shown in Figure 3(c), the numerical values are in very good agreement with the linear 

theory. We note that the parameters employed in the simulations are comparable to those used 

for studying phase separation kinetics in a lithium-ion insertion electrode material LixFePO4 

[16,17], in which a Li-rich (LiFePO4) and Li-poor (FePO4) phase is separated by a miscibility 

gap. FePO4/LiFePO4 domains aligned along the surface were observed in thin plate particles in a 

previous experiment [7], suggesting that they probably result from SCSD. Such a connection is 

corroborated by more detailed 3D simulations that account for the anisotropies of Li diffusion 

and elasticity in LiFePO4, to be published elsewhere. 

     Our finding on the existence of SCSD has profound implications for the stability and 

microstructural evolution of phase-separating crystals. Many important engineering materials 

such as ternary III-V semiconductors [18] show a large separation between the chemical and 

coherent spinodals due to strong misfit strain energy. SCSD considerably expands the unstable 

region of the homogeneous solution of these materials and may control the phase separation 

morphology. The development of lateral composition modulation has been frequently seen in 

semiconductor and magnetic thin films grown epitaxially on substrates [6,19]. Although phase 



separation in such films is affected by both the free surface and substrate/film interface, the 

epitaxial strain usually favors composition homogeneity [20], but the stress relaxation near 

surface promotes lateral fluctuation. Notably, Hsieh et al. [6] observed a depth-dependent 

composition modulation in low-temperature grown Al0.3Ga0.7As films after annealing at 600°C. 

The lateral Al concentration variation is most pronounced near the surface and decays gradually 

into the films, which bears close resemblance to the surface-mode perturbations. While a 

vacancy-assisted mechanism was suggested by Hsieh et al. to account for the depth dependence, 

the well-defined orientation and periodicity of the domain pattern is a strong indication of the 

occurrence of SCSD during annealing.  

     In summary, we have revealed the existence of unique surface modes of coherent spinodal 

decomposition (SCSD) in crystalline solids with miscibility gaps and derived analytical 

predictions for their characteristic wavelength. SCSD exhibits larger growth rates than the bulk 

modes and extends the instability region of a supersaturated solid solution from the coherent to 

the chemical spinodal. SCSD generates heterostructures with very different morphology and 

feature sizes from bulk spinodal decomposition, which may be potentially utilized in a variety of 

applications such as nanostructure patterning and photoluminescence. Our study and its 

extension will provide guidance for controlling SCSD to produce desired nanostructures.  
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Figure 1 Phase diagram of a regular solution solid modeled after parameters described in the text. 

Areas of different shades represent regions in which phase separation occurs through different 

mechanisms. The dotted line denotes the existence limit of underdamped surface modes. The 

states marked by the symbols ♦ (k0=1.1), ■ (k0=0.85), and x(k0=0.5i) correspond to the  

curves plotted in Figure 2(a).  

 

 

 

 

 

 

 



 

Figure 2 (a) Dispersion relation  of SCSD at k0=1.1, 0.85 and 0.5i in dimensionless units. 

(b)  normalized by  at k0=0.8, 0.75, 0.7 and 0.6. Underdamped ( ) and 

overdamped ( ) surface modes are represented by solid and dashed lines, respectively. 

 

  



 

Figure 3 (a) Snapshots of spinodal decomposition in a solid with free surfaces and an initial state 

at c0 = 0.5 and T=298K (♦ in Figure 1). (b) Amplitude of the dominant surface composition wave 

calculated from simulation (solid) and linear stability analysis (dashed). (c) Dimensionless ωmax
surf  

vs. k0 calculated from simulations (squares) and linear theory (solid line). Also shown are the 

maximal ω of bulk coherent (dashed) and chemical (dashed-dotted) spinodal decomposition. 

The inset compares the asymptotic and exact expressions of ωmax
surf (k)  in the limit k0→0. 

 


