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In recent years extensive theoretical and experimental studies of universal few-body physics have
advanced our understanding of universal Efimov physics. Whereas theory had been the driving force
behind our understanding of Efimov physics for decades, recent experiments have contributed an
unexpected discovery. Specifically, measurements have found that the so-called three-body parame-

ter determining several properties of the system is universal, even though fundamental assumptions
in the theory of the Efimov effect suggest that it should be a variable property that depends on
the precise details of the short-range two- and three-body interactions. The present Letter resolves
this apparent contradiction by elucidating previously unanticipated implications of the two-body
interactions. Our study shows that the three-body parameter universality emerges because a uni-
versal effective barrier in the three-body potentials prevents the three particles from simultaneously
getting close together. Our results also show limitations on this universality, as it is more likely to
occur for neutral atoms but less likely to extend to light nuclei.

PACS numbers: 31.15.ac,31.15.xj,67.85.-d

In the early 70’s, Vitaly Efimov predicted a strikingly
counterintuitive quantum phenomenon [1], today known
as the Efimov effect: in three-body systems for which
the two-body s-wave scattering length a is much larger
than the characteristic range r0 of the two-body interac-
tion, an infinite number of three-body bound states can
be formed even when the short-range two-body interac-
tions are too weak to bind a two-body state (a < 0).
The Efimov effect, once considered a mysterious and es-
oteric effect, is today a reality that many experiments in
ultracold quantum gases have successfully observed and
continue to explore [2–14].

One of the most fundamental assumptions underly-
ing our theoretical understanding of this peculiar effect
is that the weakly bound three-body energy spectrum,
and other low-energy three-body scattering observables,
should depend on a three-body parameter that encap-
sulates all details of the interactions at short distances
[15]. So, while these details are critical in determining
the deeply bound three-body spectrum often of interest
to spectroscopists, they only enter ultracold properties
through this single parameter [15]. Because of its con-
nection to these short-range details, the three-body pa-
rameter has been viewed as nonuniversal since its value
for any specific system was expected to depend on the
precise details of the underlying two- and three-body in-
teractions [16–18].

In nuclear physics, this picture seems to be consis-
tent, i.e., properties of three-body weakly bound states
are sensitive to the nature of the two- and three-body
short-range interactions [17]. More recently, however,
Berninger et al. [3] have experimentally explored this
issue for alkali atoms whose scattering lengths are mag-
netically tuned near different Fano-Feshbach resonances
[19]. Even though the short-range physics can be ex-
pected to vary from one resonance to another, Efimov
resonances were found for values of the magnetic field
at which a=a−

3b
=−9.1(2)rvdW, where rvdW is the van

der Waals length [20, 21]. Therefore, in each of these
cases, the three-body parameter was approximately the
same, thus challenging a fundamental assumption of the
universal theory. Even more striking has been the ob-
servation that the Efimov resonance positions obtained
for 39K [4], 7Li [5–7], 6Li [8–11], and 85Rb [12] were
also measured to be consistent with values of a−

3b
/rvdW

found for 133Cs [3]. (Note that the work in Ref. [7]
also provided early suggestive evidence of such universal
behavior.) These observations provide strong evidence
that the three-body parameter has universal character
for spherically-symmetric neutral atoms, and therefore
suggest that something else beyond the universal theory
needs to be understood.

This Letter precisely identifies the physics beyond the
universal theory that explains the universality of the
three-body parameter, and presents theoretical evidence
to support the recent experimental observations. Previ-
ous work has shown that the three-body parameter can
be universal — that is, independent of the details of the
interactions — in three-polar-molecule systems [22] and
in three-atom systems near narrow Fano-Feshbach reso-
nance [23, 24], although recent work has shown that the
latter case likely requires even more finely-tuned con-
ditions [25]. Our present numerical analysis, however,
adds another, broader class of systems with a universal
three-body parameter: systems with two-body interac-
tions that efficiently suppress the probability to find any
pair of particles separated by less than r0. This class
of systems, therefore, is more closely related to systems
near broad Fano-Feshbach resonances [19].

Such a suppression could derive from the usual classical
suppression of the probability for two particles to exist
between r and r + dr in regions of high local velocity
~kL(r), which is proportional to [mdr/~kL(r)] (m being
the particle mass), the time spent classically in that inter-
val dr (see Ref. [26]). It is possible that there could be an
additional suppression as well, through quantum reflec-
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FIG. 1: (a) The full energy landscape for the three-body potentials at a = ∞ for our vaλ model potential. (b) effective diabatic
potentials Wν relevant for Efimov physics for vaλ with an increasingly large number of bound states (λ∗

n is the value of λ that
produces a = ∞ and n s-wave bound states). Wν converge to a universal potential displaying the repulsive barrier at R ≈ 2rvdW
that prevents particles access to short distances. (c)-(e) demonstrate the suppression of the wave function inside the potential
well through the channel functions Φν(R; θ, ϕ) for R fixed near the minima of the Efimov potentials in (b). (c) shows the
mapping of the geometrical configurations onto the hyperangles θ and ϕ. (d) and (e) show the channel functions, where the

“distance” from the origin determines |Φν |
1/2, for two distinct cases: in (d) when there is a substantial probability to find two

particles inside the potential well (defined by the region containing the gray disks) and in (e) with a reduced probability — see
also our discussion in Fig. 2. In (d) and (e), we used the potentials vsch and vaλ, respectively, both with n = 3.

tion from a potential cliff [27]. Systems supporting many
bound states, such as the neutral atoms used in ultracold
experiments with their strong van der Waals attraction,
clearly exhibit this suppression. In general, a finite-range
two-body potential that supports many bound states de-
creases steeply with decreasing interparticle distance r,
starting when r/rvdW . 1, at which point the poten-
tial cliff plays a role analogous to a repulsive potential
for low-energy scattering. We demonstrate this fact by
showing that the three-body parameter in the presence of
many two-body bound states roughly coincides with that
for a 100% reflective two-body model potential, where
the two-body short-range potential well is replaced by a
hard-sphere.
The starting point for our investigation of the univer-

sality of the three-body parameter is the adiabatic hy-
perspherical representation [18, 28]. This representation
offers a simple and conceptually clear description by re-
ducing the problem to the solution of the “hyperradial”
Schrödinger equation :

[

− ~
2

2µ

d2

dR2
+Wν(R)

]

Fν(R)

+
∑

ν′ 6=ν

Wνν′ (R)Fν′(R) = EFν(R). (1)

Here, the hyperradius R describes the overall size of
the system; ν is the channel index; µ = m/

√
3 is the

three-body reduced mass for particle masses m; E is the

total energy; and Fν is the hyperradial wave function.
The nonadiabatic couplings Wνν′ drive inelastic transi-
tions, and the effective hyperradial potentialsWν support
bound and resonant states. To treat problems with deep
two-body interactions — necessary to see strong inside-
the-well suppression — requires us to solve Eq. (1) for
two-body model interactions that support many bound
states, a challenge for most theoretical approaches. Us-
ing our recently developed methodology [29], however,
we have treated systems with up to 100 two-body ro-
vibrational bound states and have solved Eq. (1) beyond
the adiabatic approximation. Here, the universality of
the three-body parameter is analyzed for a number of
model potentials, one of then being the usual Lennard-
Jones potential:

vaλ(r) = −C6

r6
(

1− λ6/r6
)

, (2)

where λ is adjusted to give the desired value of a and
number of bound states. The other short-ranged poten-
tial models used here, namely, vsch, v

b
λ and vhs

vdW
, can be

found in Ref. [26].
Figure 1 (a) shows the adiabatic potentials Uν at

|a| = ∞ obtained using the potential vaλ above supporting
25 dimer bound states. At first glance, it is difficult to
identify any universal properties of these potentials. Efi-
mov physics, however, occurs at a very small energy scale
near the three-body breakup threshold. Indeed, a closer
analysis of the energy range |E| < ~

2/mr2
vdW

[Fig. 1 (b)]
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FIG. 2: Density plot of the three-body probability density
|Φν(R; θ, ϕ)|2 sin 2θ which determines the three particle con-
figuration [see Fig. 1 (c)] in the θ-ϕ hyperangular plane for
a fixed R (sin 2θ is the volume element). (a)–(d) show the
results for an R near the minima of the Efimov potentials
in Fig. 1 (b) for the first four scattering length poles of
the vaλ model as indicated. (a) shows that there is a neg-
ligible probability to find the particles at distances smaller
than rvdW (outer dashed circle) and, of course, inside the
1/r12 repulsive barrier (inner solid circle). For higher poles,
i.e., as the strength of the hard-core part of vaλ potential de-
creases, the potential becomes deeper and penetration into
the region r < rvdW is now classically allowed. Nevertheless,
(b)–(e) show that inside-the-well suppression still efficiently
suppresses the probability to find particle pairs at distances
r < rvdW, found to be in the range 2%–4%.

reveals the universal properties of the key potential curve
controlling Efimov physics.

Figure 1 (b) shows one of our most important pieces of
theoretical evidence for the three-body parameter univer-
sality: the effective adiabatic potentials Wν obtained us-
ing vaλ for more and more two-body bound states converge
to a single universal curve. [In some cases in Fig. 1 (b) we
have manually diabatized Wν near sharp avoided cross-
ings in order to improve the visualization.] As one would
expect, the usual Efimov behavior for the effective po-
tentials, Wν=−~

2(s20 + 1/4)/2µR2 with s0 ≈ 1.00624,
is recovered for R > 10rvdW. It is remarkable, how-
ever, that the Wν also converge to a universal potential
curve for R < 10rvdW and, more importantly, these ef-
fective potentials display a repulsive wall or barrier at
R ≈ 2rvdW. This barrier prevents the close collisions
that would probe the small R nonuniversal three-body
physics, including three-body forces known to be impor-
tant in chemistry, thus producing the three-body param-
eter universality as we confirm below. This is in fact our
most striking result: a sharp cliff or attraction in the two-

body interactions produces a strongly repulsive universal

barrier in the effective three-body interaction potential.

Qualitatively, this universality derives from the re-
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FIG. 3: (a) The Efimov potential obtained from the differ-
ent two-body potential models used here. The reasonably
good agreement between the results obtained using models
supporting many bound states (vsch, vaλ and vbλ) and vhsvdW
[obtained by replacing the deep potential well with a hard
wall but having only one (zero-energy) bound state] supports
our conclusion that the inside-the-well suppression of the wave
function is the main physical mechanism behind the univer-
sality of the three-body effective potentials. The differences
between these potentials are seen to cause differences of a
few percent in the three-body parameter. (b) Comparison
between the effective potential proposed by Ref. [39] (green
dashed curve) and the one (red solid curve) constructed to de-
scribe our findinings: 2µr2vdWW u

ν (R)/~2 ≈ −(s20 + 1/4)/X2−
b3/X

3 − b4/X
4 − b5/X

5 + b16/X
16, where X = R/rvdW and

b3 = 2.334, b4 = 1.348, b5 = 44.52, b6 = 4.0× 104.

duced probability to find particles inside the attractive
two-body potential well. This effect is clear from the
channel functions Φν [18, 28], in Figs. 1 (c)-(e) and the
hyperangular probability densities in Fig. 2. In the adia-
batic hyperspherical representation, the space forbidden
to the particles fills an increasingly larger portion of the
hyperangular volume as R decreases. This evolution can
be visualized as the dashed lines in Fig. 2 (a)–(d) expand-
ing outward. In the process, the channel function Φν is
squeezed into an increasingly small volume, driving its ki-
netic energy higher and producing the repulsive barrier in
the universal Efimov potential. Moreover, this suppres-
sion implies that the details of the interaction should be
largely unimportant. Consequently, different two-body
model potentials should give similar three-body poten-
tials. Figure 3 (a) demonstrates this universality by com-
paring Wν obtained from different potential models sup-
porting many bound states. Perhaps more importantly,
it compares them with the results obtained from the two-
body model vhs

vdW
that replaces the deep well by a hard

wall, essentially eliminating the probability of observing
any pair of atoms at short distances. Quantitatively, how-
ever, the fact that the barrier occurs only at R ≈ 2rvdW
indicates that universality might not be as robust as in
the cases discussed in Refs. [22–25]. It is thus impor-
tant to quantify the value of the three-body parameter
to assess the size of nonuniversal effects.

In principle, the three-body parameter could be de-
fined in terms of any observable related to the Efimov
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FIG. 4: Values for the three-body parameter (a) κ∗ and (b) a−

3b
as functions of the number n of two-body s-wave bound states

for each of the potential model studied here. (c) Experimental values for a−

3b
for 133Cs [3] (red: ×, +, �, and ∗), 39K [4]

(magenta: △), 7Li [5] (blue: •) and [6, 7] (green: � and ◦), 6Li [8, 9] (cyan: N and ▽) and [10, 11] (brown: H and ♦), and
85Rb [12] (black: �). The gray region specifies a band where there is a ±15% deviation from the vhsvdW results. The inset of
(a) shows the suppression parameter ξinp [Eq. (S.5) in Ref. [26]] which can be roughly understood as the degree of sensitivity

to nonuniversal corrections. Since ξinp is always finite — even in the large n limit — nonuniversal effects associated with the
details of the short-range interactions can still play an important role. One example is the large deviation in κ∗ found for the
vsch (n = 6) model, caused by a weakly bound g-wave state. For n > 10 we expect κ∗ and a−

3b
to lie within the range of ±15%

established for n ≤ 10.

physics [15]. Two of its possible definitions are [15]: the
value of 1/a = 1/a−

3b
< 0 at which the first Efimov res-

onance appears in three-body recombination (see for in-
stance Ref. [30]) and κ∗ = (m|E0

3b
|/~2)1/2, where E0

3b
is

the energy of the lowest Efimov state at |a| → ∞. Our
numerical results for κ∗ and a−

3b
are shown in Figs. 4(a)

and (b), respectively, demonstrating their universality
in the limit of many bound states. In fact, the val-
ues for κ∗ and a−

3b
in this limit differ by no more than

15% from the vhs
vdW

results — κ∗ = 0.226(2)/rvdW and
a−
3b

= −9.73(3)rvdW [solid black line in Fig. 4(a) and
(b)] — indicating, once again, that the universality of the
three-body parameter is dependent upon the suppression
of the probability density within the two-body potential
wells. Given this picture, we attribute the non-monotonic
behavior of κ∗ and a−

3b
in Fig. 4 to the small but fi-

nite probability to reach short distances, which brings
in nonuniversal effects related to the details of two- and
three-body forces, including occasional interactions with
an isolated perturbing channel. Nevertheless, our results
for a−

3b
are consistent with the experimentally measured

value for 133Cs [2, 3], 39K [4], 7Li [5–7], 6Li [8–11, 31],
and 85Rb [12], all of which lie within about 15% of the
vhs
vdW

result. The average of the experimental values dif-
fers from the present vhs

vdW
result by less than 3%.

Previous treatments have failed to predict the univer-
sality of the three-body parameter for various reasons.
In treatments using zero-range interactions, for instance,
the three-body parameter enters as a free parameter to
cure the Thomas collapse [32], preventing any statement
about its universality. Finite range models devoid of a
van der Waals tail, like those used in some of our own
treatments [18] [corresponding to the results for vsch with
n = 2 and 3 in Figs. 4 (a) and (b)], have failed for lack of
substantial suppression of the probability density in the

two-body wells. Such models, however, are more appro-
priated to describe light nuclei having few bound states
and shallow attraction. In contrast to Ref. [18], other
models [24, 33–38] have found better agreement with ex-
periments. Our analysis of these treatments, however,
indicates that the two-body models used have many of
the characteristics of our vhs

vdW
, therefore satisfying the

prerequisite for a universal three-body parameter. A re-
cent attempt [39] to explain this universality using an ad

hoc hyperradial potential that bore little resemblance to
ours [see Fig. 3 (b)]. This ad hoc three-body potential
displayed strong attraction at short distances in contrast
to our key finding, which to reiterate, is that a cliff of
attraction for two bodies produces a universal repulsive
barrier in the three-body system.

In summary, our theoretical examination shows that
the three-body parameter controlling much of universal
Efimov physics can also be a universal parameter under
certain circumstances which should be realized in most
ultracold neutral atom experiments. Provided the under-
lying two-body short-range interaction supports a large
number of bound states, or it has some other property
leading to the suppression of the wave function at short
distances, three-body properties associated with Efimov
physics can be expected to be universal. This surpris-
ing new scenario could not have been, and was not, an-
ticipated from the simple model calculations to date.
Ironically, increasing the complexity of the model sim-
plified the outcome by effectively eliminating the impact
of the deeply bound two- and three-body states on the
low-energy bound and scattering three-body observables.
That is, the three-body parameter becomes largely uni-
versal.
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