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It is shown that at sufficiently large Nc for incident momenta which are much larger than the
QCD scale, the total nucleon-nucleon cross section is independent of incident momentum and given
by σtotal = 2π log2(Nc)/(m

2

π
) . This result is valid in the extreme large Nc regime of log(Nc) ≫ 1

and has corrections of relative order log (log(Nc)) / log(Nc). A possible connection of this result to
the Froissart-Martin bound is discussed.
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The large Nc limit of QCD and the 1/Nc expansion
have been of great interest since introduced by ‘tHooft
nearly 40 years ago [1]. While the approach to date has
not provided a path by which quantities can be calcu-
lated ab initio directly from QCD except in special cases
such as QCD in 1+1 dimensions [2] or QCD in the limit
of heavy quark masses [3, 4], it has provided a qualitative
understanding of many aspects of hadronic phenomena.
Witten’s extension of the analysis to include baryons has
played a critical role [3]. One of the remarkable features
of baryons is the emergence of a contract SU(2Nf) sym-
metry at large Nc [5] which has allowed predictions of
both ground state baryons [5] and excited baryonic res-
onance [6]. In this work we will focus on the nonstrange
sector and assume exact isospin invariance.

Implications of large Nc QCD for nuclear physics were
first explored in Witten’s seminal paper on large Nc

baryons [3]. A key result of this analysis is that the
nucleon-nucleon interaction has a strength which scales
as N1

c and a range which scales as N0
c . Moreover,

nucleon-nucleon scattering with fixed incident momen-
tum has no smooth large Nc limit. However, a sensible
time-dependent mean-field description emerges if the ini-
tial velocity is held fixed at large Nc (that is, that mo-
mentum scales linearly with Nc given that the mass is
linear in Nc). While there has been significant work on
various aspects of nuclear physics at large Nc, such as
treatments of the NN potential [7], the phenomenologi-
cal relevance of the large Nc limit for nuclear physics is
far less clear than for hadronic physics [8]. Despite this,
it is of interest to understand the Nc scaling behavior of
quantities of interest in nuclear physics. One quantity
which has received comparatively little attention except
for a recent paper on its spin flavor dependence [9] is the
total nucleon-nucleon cross section (with the effects of
electromagnetic interactions removed). This is unfortu-
nate since, as will be shown in this letter, the total cross
section is truly remarkable in that it can be computed
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analytically when Nc is sufficiently large:

σtotal =
2π log2(Nc)

m2
π

. (1)

Equation (1) holds for all spin-isopsin channels in the
regime where the incident momentum is much larger
than ΛQCD; corrections to Eq. (1) are of relative or-
der log (log(Nc)) / log(Nc). Formally Nc needs to be ex-
tremely large for Eq. (1) to hold and it is not obvious that
the result is phenomenologically relevant for the physi-
cal world of Nc = 3. In any event, the result is of real
interest from the perspective of theory.
To gain insight, it is useful to first consider a simplified

“toy problem” of scattering of two nonrelativistic spin-
less particles of mass M interacting via a central poten-
tial which falls off exponentially at large distances. The
problem has a control parameter, λ, which controls the
scaling of the potential strength (but not its range), the
mass, and the initial relative momentum:

M = λM̃ V (r) = λṼ (r) k = λk̃ ; (2)

where the quantities with a tilde are independent of λ.
The classical trajectory followed by a particle in this
problem depends on the impact parameter b and p̃, Ṽ (r),

and M̃ but not on λ: if the quantum scattering is de-
scribed well classically, then the differential cross section
will be independent of λ. The parameter, λ, however,
controls the region of validity of a semi-classical descrip-
tion in an underlying quantum scattering problem; the
classical limit corresponds to large λ. Of course, by de-
sign this problem mirrors the Nc scaling rules of NN scat-
tering with λ playing the role of Nc.
The potential is central and the partial waves are in-

dependent. Using the scaling rules in Eq. (2) and the
Schrödinger equation for a given partial wave, the phase
shifts can be shown to scale as

δl(k) = δλl̃(λk̃) = λ δ̃l̃(k̃) , (3)

where l̃ = l/λ is introduced for convenience and δ̃ is in-
dependent of λ. Corrections are of relative order 1/λ. To
see this, parameterize the radial wave function for a given
partial wave as the product of a phase and an amplitude,
ψl(r) = eiΦl(r)|ψl(r)|, and take l to be proportional to



2

λ. It is easy to show self-consistently that at large λ, Φ
is proportional to λ while |ψl(r)| is slowly varying and
independent of λ. This is precisely what one expects if λ
acts as the control parameter for the semi-classical limit.
The total cross section for central potentials is given by

σtotal
toy (k) =

4π

k2

∑

l

(2l + 1) sin2(δl(k))

≈ 4π

k̃2

∫

dl̃ 2l̃ sin2(λδ̃l̃(k̃))

(4)

where δl is the phase shift for the lth partial wave and
the integral expression becomes exact as λ→ ∞.

In the integral of Eq. (4), focus on the range from l̃1
to l̃2 . For large λ, sin2 oscillates rapidly and averages to
1
2 (up to corrections of order 1/λ) over this region; the
contribution to the cross section becomes

∆σtotal
toy (k) = 2π(b22 − b21) with b ≡ l

k
=
l̃

k̃
. (5)

This is twice the geometric cross section associated with
impact parameters from b1 and b2; the factor of 2 is due to
a nearly forward diffractive scattering contribution equal
to the geometrical contribution [10]. At infinite λ there

is no bound on the l̃s that contribute implying that the
total cross section diverges as λ→ ∞.

The quantum cross section is finite because the phase
shifts approach zero as l → ∞. For any finite value
of λ, there is a regime of sufficiently large l such that
δ̃ ∼ λ−1 and the sin2 term does not oscillate rapidly to
yield an average of 1

2 . The phase shift in this regime
rapidly becomes small and makes small contributions to
the total cross section. The value of l̃ beyond which the
rapid oscillations effectively turns off depends on λ and
gets pushed off to infinity as λ→ ∞.

To see this, start with the integral form of Eq. (4) and

change variables into an integral over δ̃. It is a simple
matter to show that

σtotal
toy = 2πb2cut+2πk̃−2

∫

δcut

λ

0

dδ̃

(

dl̃2

dδ̃

)

sin2(λδ̃)+O(λ−1)

(6)

where dl̃2

dδ̃
is treated as a function of δ̃ in the integral and

δcut is an arbitrary but fixed “cutoff” phase shift of order
λ0; bcut is the impact parameter associated with δcut.
The arbitrariness in the choice of δcut is compensated
by the integral in Eq. (6). If the integral in Eq. (6) is
parametrically smaller than 2πb2cut when δcut is of order
λ0, then up to parametrically small corrections σtotal

toy =

2πb2cut.

As shall be shown self-consistently, the total cross sec-
tion is dominated by the behavior for large impact pa-
rameters, or equivalently, large l̃. In this regime, each
partial wave is semi-classical and the potential is much
smaller than the centrifugal barrier. Thus, the phase

shifts are well approximated [11] by

δ̃ = −
∫ ∞

l̃/k̃

µ̃Ṽ (r)
√

k̃2 − l̃2/r2
dr . (7)

where µ̃ is the reduced mass divided by λ.
For concreteness, take the form of the potential

to be the sum of Yukawa interactions: Ṽ (r) =
∑

n C̃n
exp(−r/rn)

r where the C̃n are strength parameters
independent of λ and the rn are the ranges. Note that at
large λ, bcut is large and the integral in Eq. (7) is domi-
nated by the longest-range contribution to the potential.
Evaluating the integral yields

δ̃l̃ = − C̃M̃
k̃

K0

(

l̃/(k̃r0)
)

= − C̃0µ̃

k̃
K0

(

bl̃/r0)
)

. (8)

where r0 is the longest range in the potential and C̃0

is the associated strength. For large values of bl̃/r0 it
is legitimate to use the asymptotic form of the Bessel
function when inverting this relation; doing this yields

bl̃ =
r0
2
W

(

C̃2µ̃2π

δ̃2
l̃
k̃2

)

(9)

where W is the Lambert function. As x gets very
large W (x) → log(x) (reflecting the dominantly expo-
nential behavior of K0) with corrections of relative order

log (log(x)) / log(x). At large l̃, the phase shifts become

small; the log is dominated by δ̃l̃; bl ≈ −r0 log(δ̃l) and
bcut = −r0 log(δcut/λ). Thus up to corrections of order
λ0

bcut = r0 log(λ) (10)

and at large λ is σtotal
toy = 2π r20 log2(λ) provided the in-

tegral in Eq. (6) is parametrically small—which, as will
be shown shortly, it is.
Note that the sensitivity to the particle’s mass and to

the strength of the potential are contained in the order
λ0 correction terms to Eq. (10). Note further, that the
sensitivity to the choice of δcut is also contained in the
λ0 correction terms. Since the dependence of the choice
of δcut is compensated by the integral in Eq. (6), it fol-
lows that the integral is also parametrically of order λ0

and makes a negligible contribution to the cross section
at large λ. Thus, σtotal

toy = 2π r20 log2(λ) with corrections
of relative order log (log(x)) / log(x). With the substi-
tutions r0 → 1/mπ and λ → Nc, this is of the form of
Eq. (1). It should be apparent that any power law pref-
actor to the Yukawa potentials cannot alter this result at
leading order.
The result also holds for a relativistic version of the

toy problem. Consider potential scattering in a relativis-
tic two-body model (which lacks micro causality but can
be consistently formulated as a quantum theory [12]).
The basic set up remains intact: the partial wave decom-
position still holds and Eqs. (4) and (6) remain valid. In
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the semi-classical regime with sufficiently large l̃, one can
always cast the phase shift into the form of Eq. (7) with

Ṽ (r) replaced by (an energy dependent) Ṽeff(r) whose
form depends on the transformation properties of the in-
teraction. If the longest range interaction in the model
transforms as a Lorentz scalar (as in QCD), then at long

range Ṽeff(r) = Ṽs(r)Ẽ/µ̃. Relativity affects bcut only by
renormalizing the strength of the longest-range interac-
tion by an energy-dependent amount independent of λ.
Since the leading behavior of the total cross section does
not depend on the strength, the relativistic toy model
also has: σtotal

rel.toy = 2π r20 log2(λ) which corresponds to

Eq. (1).
Nucleon-nucleon scattering in large Nc QCD is clearly

more complicated than in the toy problem for several
reasons: i) The nucleons have spin and the partial wave
expansion for elastic scattering is necessarily of a coupled
channel form; ii) there is an emergent spin-isospin sym-
metry at large Nc [5]; as a result of this symmetry the
∆ and a whole tower of baryons are stable and nearly
degenerate with the nucleon at large Nc. The emergent
symmetry implies correlations between channels in scat-
tering [7, 9, 14]; iii) There are inelastic channels due to
meson production. However, as discussed below, the re-
sult in Eq. (1) is quite robust and is unaltered by these
complications.
To treat the full problem, the generically strong (or-

der Nc) nature of the NN interaction must be encoded
in a model-independent way. The potential model treat-
ments of the toy problem are inappropriate to this prob-
lem and, in any event, the potential is intrinsically un-
physical which can lead to subtleties in the Nc counting
[13]. The physically relevant object is the S-matrix for
nucleon-nucleon scattering, SNN. Its elements for elastic
scattering can be denoted SNN

l,a:l′,a′ where a (a′) specifies

the spin and isospin configuration of the incident (final)
states of the two nucleons. Conservation of angular mo-
mentum and isospin along with the fermion nature of
nucleons constrain the form of S

NN; for example, the
matrix elements are zero unless l′ = l − 1, l, l+ 1.
The strong NN interaction at large Nc cannot be en-

coded by having S
NN scale linearly in Nc; it is bounded

due to the unitarity. To proceed, note that in the toy
problem, Eq. (3) the phase shift, i.e the logarithm of
the S matrix in the partial wave channel, scales with Nc.
This behavior is expected to hold generically for diagonal
matrix elements of the S matrix in large Nc QCD.

log
(

SNN
l,a;la

)

≡ 2iδl,a = 2iδRl,a − 2δIl,a ∼ Nc (11)

where the S-matrix is for nucleon-nucleon elastic scatter-
ing at fixed initial velocity. Note that δl,a is not real in
general; the imaginary part reflects scattering out of the
original channel either to other elastic channels (with dif-
ferent final l or a) or to inelastic channels. Both the real
and imaginary parts are expected to scale with Nc. This
applies to all physical channels (eg., two neutrons with
spins aligned with the beam).

There are several ways to understand the origin of the
scaling in Eq. (11); the simplest is via an optical poten-
tial for relativistic nucleon-nucleon scattering; its imagi-
nary part encodes loss of flux into channels with particle
creation. Using Witten’s counting rules one sees that
the generic counting for both the real and the imaginary
parts of the optical potential both scale with Nc. Semi-
classical analysis analogous to the derivation of Eq. (7)
then straightforwardly yields Eq. (11). A more complete
derivation of Eq. (11) will be discussed in a forthcoming
publication.
The total cross section in multi-channel problems with

the initial nucleons in spin-isospin configuration a can be
expressed in terms of the diagonal matrix elements of the
S matrix:

σtotal
a (k) = (12)

2π

k2

∑

l

(2l + 1)
(

1− exp(−2δIl,a(k)) cos(2δ
R
l,a(k))

)

≈

4π

k̃2

∫

dl̃2
(

1− exp
(

−2Ncδ
I
l̃,a
(Nck̃)

)

cos
(

2Ncδ
R
l̃,a
(Nck̃)

))

where k = Nck̃ ; the first form is general [11] and the
second form builds in the Nc scaling of the phase shifts.
The integral form becomes exact in the limit Nc → ∞.
Note that Eq. (12) coincides with Eq. (4) of the toy

problem if one sets δIl,a to zero. Moreover, Eq. (5) con-
tinues to hold providing the integrand is in the regime
where either the real or imaginary parts of δ̃ (or both)
are of order unity; in the case of the real part it is due
to rapid oscillations as in the toy problem; in the case of
the imaginary part it holds due to an exponential sup-
pression. As in the toy problem, the total cross section
is determined by where δ̃ ceases to be of order unity and
becomes of order 1/Nc. It is easy to see that if, as a
function of l, δIl,a approaches zero at least as rapidly as

δRl,a, then the total cross section at leading order will be

determined by where δ̃R
l̃,a

drops to order of 1/Nc.

It is clear that δIl,a does approaches zero more rapidly

than δRl,a: consider going to sufficiently large l̃ so that the
phase shifts are accurately described by the Born approx-
imation for the longest range part of the interaction—
one-pion exchange. In that regime the δRl,a is small but

non-vanishing while δIl,a vanishes at the first Born ap-
proximation level only arising at second order. Moreover,
it is clear that at very large l the real part of the phase
shift is dominated by the Born approximation contribu-
tion to one-pion exchange which drops off exponentially
in exactly the same way that it does in the toy model.
Accordingly the result in the toy model carries across and
Eq. (1) follows exactly as in the toy model. Note that this
exponential fall-off holds for any physical spin and isospin
configuration of the initial baryons; pion exchange domi-
nates regardless of the initial spin orientations or whether
the two nucleons are the same or different. Thus Eq. (1)
also holds for any initial configuration and the leading
order cross section is spin and isospin independent. This
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is consistent with the analysis of Ref. [9], although it
is more restrictive than the most general leading-order
result deduced there.
It is worth observing that at Nc, elastic scattering

should account for 1/2 of the total scattering or more.
In the regime of l where δIl,a ∼ Nc, the contribution to
the scattering looks like a black disk for which diffractive
scattering is 50%. There may, in principle, also be sub-
stantial contributions for the regime where δIl,a is small

but δRl,a ∼ Nc; such contributions will have elastic contri-

butions of greater than 50%.
The log2 form of the cross section in Eq. (1) is strik-

ingly similar to the Froissart-Martin bound [15]. At large
Mandelstam s, considerations of unitarity, analyticity
plus the knowledge that the pion is the lightest excita-
tion in the system serve to bound the growth of the total
cross section at large s

σtotal ≤ π

m2
π

log2
(

s

s0

)

, (13)

where s0 is a reference scale. This similarity may not
be accidental. Note that the natural regime for nucleon-
nucleon scattering at large Nc is for fixed velocity [3]
which in turn implies that s ∼ N2

c . Provided that s0
does not also scale with Nc, the bound becomes σtotal ≤
π
m2

π

log2
(

Ncs̃
s0

)

where s̃ is independent of Nc. If one takes

the largeNc limit prior to the large s limit, and keeps only
the leading behavior, one has σtotal ≤ 4π

m2
π

log2 (Nc) up to

corrections of relative order 1/ log(Nc). Note that Eq. (1)
satisfies this inequality by exactly a factor of 1

2 . This

factor of 1
2 is suggestive. The derivation of the Froissart-

Martin bound requires unitarity. However, if one looks
at the integral form of Eq. (12) it is clear that in the
region of dominant contribution, the integrand at large
Nc is precisely 1

2 of its unitarity bound (which occurs at

δR = π/2, δI = 0). Thus, the present result is natural in
light of the Froissart-Martin bound.
To what extent is this result applicable to the physical

world of Nc=3? In the physical world, the total cross

section for
√
s well above ΛQCD is approximately inde-

pendent of s[18] as would be expected from the large Nc

analysis. Over three orders of magnitude in
√
s, from

1.5GeV <
√
s < 1200GeV, the cross section for proton-

proton scattering varies by only about 25%. Moreover,
the cross section is dominantly spin and isospin indepen-
dent [9, 16] as predicted to occur at large Nc. These
results may suggest that the large Nc analysis is of phe-
nomenological relevance for the physical world of Nc = 3.
However, this is not clear. For example, above 1.5 GeV,
the total cross section is predominantly inelastic; the elas-
tic cross section is typically less than 1

4 of the total cross
section and by

√
s of several 10s of GeV, it drops to under

20%. While it has been argued that at truly asymptoti-
cally high energies [17] it approaches 1

2 , at large Nc this
behavior is expected for all s well above Λ|rmQCD. This
implies that a substantial part of the cross section comes
from regions where both the real and imaginary parts
of the phase shift are small. This is at odds with the
behavior expected at large Nc where, as noted above,
elastic scattering should be 50% or higher. Given this,
it is perhaps not too surprising that the absolute predic-
tion of Eq. (1) that σtotal ≈ 150mb is significantly larger
than the empirical value of approximately 40 mb. Ul-
timately, the reason that the large Nc analysis for the
magnitude of the total cross sections is not very predic-
tive for the Nc = 3 world is quite understandable. For-
mally, one expects the analysis to be predictive only when
log(Nc) ≫ 1. Clearly this is not true for Nc = 3. What-
ever, the phenomenological significance for the world of
Nc = 3, the fact that at large Nc the total cross section
is calculable is, at the very least, of theoretical interest.
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