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Experimental implementations of quantum information processing have now reached a level of
sophistication where quantum process tomography is impractical. The number of experimental set-
tings as well as the computational cost of the data post-processing now translates to days of effort
to characterize even experiments with as few as 8 qubits. Recently a more practical approach to de-
termine the fidelity of an experimental quantum process has been proposed, where the experimental
data is compared directly to an ideal process using Monte Carlo sampling. Here we present an ex-
perimental implementation of this scheme in a circuit quantum electrodynamics setup to determine
the fidelity of two qubit gates, such as the cphase and the cnot gate, and three qubit gates, such
as the Toffoli gate and two sequential cphase gates.

Introduction — Quantum process tomography [1] is
a widely used method to obtain a complete descrip-
tion of experimental implementations of gates or algo-
rithms. With the ongoing experimental progress and
growth in system size, quantum process tomography is
already impractical and will soon become infeasible in
state-of-the-art experiments, since the number of exper-
imental settings as well as the computational cost of the
post-processing increases exponentially with the number
of qubits. Even the most recent tomography algorithms
would need days of data post-processing in order to yield
a process tomography estimate for as few as 8 qubits [2].

Thanks to the linearity of quantum mechanics, a quan-
tum process can be described by a matrix, and the pur-
pose of quantum process tomography is to estimate this
matrix. Experimentally, the determination of the process
matrix for an n-qubit process involves the preparation of
the qubits in 4n linearly independent product states and
the measurement of 4n linearly independent observables,
resulting in 42n expectation values which are related to
the process matrix by a linear transformation. There
are two major drawbacks to this approach: 1) statistical
fluctuations in the measured expectation values must be
dealt with in order for the estimated process matrix to
be physical, 2) the resulting exponential amount of data
is often reduced to a single number, the average fidelity,
which quantifies the similarity between the experimen-
tal process and some ideal physical process, and thus
the exponential amount of data collected is extremely re-
dundant. The most appropriate method to produce a
physical estimate from a perturbed data-set is still un-
der active debate [3], and Monte Carlo process certifica-
tion [4, 5] has been proposed as an efficient method to
estimate the average fidelity of an experiment to a large
class of ideal processes while completely sidestepping the
exponential overhead associated with the reconstruction
of process matrices.

Here we present the implementation of Monte Carlo
process certification on two- and three-qubit gates in a

circuit QED system [6–8] with three transmon qubits [9]
coupled to a superconducting waveguide resonator. We
give a detailed description of the protocol implemented
with our setup and analyze the errors of the protocol.
The obtained fidelities are then compared to fidelities
obtained by quantum process tomography.

Background — Monte Carlo process certification [4, 5]
relies on the fact that an n-qubit process E can be de-
scribed by a 2n-qubit density matrix ρ̂E , known as the
Choi matrix [10, 11]. In the case where we want to com-
pare an experimentally realized process Eexp to an ideal
unitary process Eideal, the fidelity expression for the two
Choi matrices [12] simplifies to

F (ρ̂Eideal , ρ̂Eexp) = tr
[
ρ̂Eideal ρ̂Eexp

]
, (1)

which in turn is related to the unitarily invariant average
fidelity by F = (dF + 1)/(d+ 1) where d is the dimension
of the Hilbert space used to describe the states of the
system [13]. The fidelity expression can be re-written as

F (ρ̂Eideal , ρ̂Eexp) =
∑
i

Pr(i)
σi
ρi
, (2)

where ρi = tr
[
ρ̂Eideal P̂i

]
and σi = tr

[
ρ̂Eexp P̂i

]
. Here, P̂i

is an orthonormal Hermitian operator basis chosen as the
4n tensor products of the Pauli matrices and the identity
and the sum (2) is taken over only the i with ρi 6= 0.

The distribution Pr(i) =
ρ2i
d reflects the relevance of the

observation of P̂i for the fidelity calculation — in par-
ticular, observables with zero expectation value in the hy-
pothetical ideal case do not contribute to the fidelity and
need not be measured in actual experiments. One can
then estimate the fidelity by randomly sampling which
observables to measure according to the relevance dis-
tribution Pr(i), and the number of observables required
for an estimate with error ε is independent of n [4, 5],
unlike tomography which would require 42n different ex-
periments. The scaling of the precision with which each
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observable must be measured depends on the process in
question, but for Clifford group [14, 15] operations such
as cnot and cphase, this scaling is independent of the
number of qubits.

Experimental setup — The straightforward implemen-
tation of Monte Carlo process certification as described
above is rather impractical, since the preparation of the
state ρ̂E , representing the Choi matrix of the process E ,
would require preparing the maximally entangled state
|φ〉 = 1√

d

∑d
i=1 |i〉 ⊗ |i〉, where d = 2n the dimension of

the state Hilbert space, to obtain ρ̂E = (1 ⊗ E)(|φ〉〈φ|).
This requires 2n qubits for an n-qubit gate, as well as
perfect storage of the n ancillary qubits.

A more experimentally relevant approach is to pre-
pare and measure only the n-qubit states on which E
acts [4, 5]. The key idea is that the effect of the mea-
surement of the first half of the state |φ〉, on which no
gate is applied, corresponds to a projection of the sec-
ond half of the state |φ〉 onto complex conjugates (in
the computational basis) of eigenstates of the first half
of the measurement operator. The measurement of ρ̂E
with randomly chosen operators Â ⊗ B̂, where Â, B̂ are
tensor products of n Pauli matrices or identities, can be
expressed as

tr
[
(Â⊗ B̂)ρ̂E

]
= tr

[
(Â⊗ B̂)(1⊗ E)(|φ〉〈φ|)

]
=

1

d

d∑
i=1

aitr
[
B̂ E(|ai〉〈ai|)

]
. (3)

Here |ai〉 is the complex conjugate of the ith eigenstate of
the operator Â with eigenvalue ai. This final expression
corresponds to the action of the process E on the state
|ai〉 followed by a measurement of the observable B̂. The
results for different input eigenstates are then summed

up to obtain an estimate of tr
[
(Â⊗ B̂)ρ̂E

]
.

Our system — The implementation of the Monte Carlo
process certification protocol was performed in a super-
conducting quantum processor consisting of three trans-
mon qubits coupled to a coplanar waveguide resonator.
The sample used is the same as the one in Refs. [16, 17].

Our 3-qubit system is small enough such that we can
measure all relevant operators and do not need to resort
to random sampling. This still allows for a significant
saving in the number of measurements because many of
the measurements required to perform process tomog-
raphy are irrelevant for the fidelity estimate. In other
words, we measure all operators which have a non-zero
expectation value for the ideal gate, and calculate the ac-
cordingly weighted average to compute the gate fidelity.

The protocol requires the preparation of qubits in
eigenstates of Pauli operators Â and the measurement
of Pauli operators B̂. The preparation of the qubit input
states is straightforward by using amplitude and phase
controlled coherent microwave pulses applied to the indi-

vidual charge control lines. In our setup, the implemen-
tation of the measurement using joint dispersive read-
out [18] of all qubits is a more complex procedure. The
measurement operator is

M̂ =
∑

i1,...,in∈{0,1}

αi1,...,in |i1〉〈i1| ⊗ |i2〉〈i2| ⊗ · · · ⊗ |in〉〈in|,

(4)
where |0〉, |1〉 are the computational basis states. The co-
efficients αi1,...,in are obtained from measurements of the
resonator transmission amplitude for each computational
basis state [18–20]. M̂ expressed in terms of individual
qubit identity and σ̂z Pauli operators is

M̂ =
∑

ĵ1,...,ĵn∈{1,σ̂z}

βj1,...,jn ĵ1 ⊗ ĵ2 ⊗ · · · ⊗ ĵn, (5)

with coefficients βj1,...,jn calculated as combinations of
the αi1,...,in . By averaging many measurement outcomes
of the same operator, we are able to perform a measure-
ment of the expectation value of the operator in question.

In general the measurement operator has 2n different
elements. However, in Monte Carlo process certification
for each input state the expectation value of only one spe-
cific element is needed. This element can be obtained by
adding measurement outcomes with different signs of σ̂z
operators of different qubits, realized by π pulses applied
to the corresponding qubits just before the measurement.
Since the first element 1 ⊗ · · · ⊗ 1 has always an expec-
tation value of one, one needs to measure 2n−1 different
expectation values to extract a single operator B̂. We
emphasize that this particular property and the overhead
associated with it relate to our joint readout, and are not
a consequence of the Monte Carlo certification method.

As an example, the joint readout procedure of the oper-
ator σ̂y ⊗ σ̂x for two qubits is presented in the following.

The joint readout operator is M̂ = α00|0〉〈0| ⊗ |0〉〈0| +
α01|0〉〈0| ⊗ |1〉〈1| + α10|1〉〈1| ⊗ |0〉〈0| + α11|1〉〈1| ⊗ |1〉〈1|,
which is equivalent to M̂ = β001⊗1+β011⊗σ̂z+β10σ̂z⊗
1 + β11σ̂z ⊗ σ̂z. The prefactors βij are determined from
measurements of the αij as described above. To measure
the given combination of Pauli operators, we rotate ac-
cordingly the measurement basis of the individual qubits.
For the example above, we apply a −π/2 rotation around
the x-axis to the first qubit and a π/2 rotation around
the y-axis to the second qubit. The resulting measure-
ment operator is M = β001 ⊗ 1 + β011 ⊗ σ̂x + β10σ̂y ⊗
1 + β11σ̂y ⊗ σ̂x. To extract only the last term in the
measurement operator, a second measurement with an
additional π pulse on both qubits is performed. This re-
sults in a measurement operator with two minus signs:
M = β001⊗1−β011⊗σ̂x−β10σ̂y⊗1+β11σ̂y⊗σ̂x. Adding
the measurement outcomes of the two experiments (for
the same input state) gives the expectation value for the
operator 2 (β001⊗ 1 + β11σ̂y ⊗ σ̂x). Since the expecta-
tion value for 1 ⊗ 1 is always equal to 1 and β00 and
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β11 are known, the expectation value of σ̂y ⊗ σ̂x can be
extracted in this way.

Hence, it is possible in our experiments to extract
any expectation value of two-qubit Pauli operators from
two measurements or three-qubit Pauli operators from
four measurements, using the corresponding single qubit
rotations. Having found the expectation values σi =

tr
[
ρ̂Eexp P̂i

]
, the fidelity can be directly calculated ac-

cording to Eq. (2).
According to Eq. (3), a measurement of one of the

expectation values σi consists of averaging measurement
outcomes over different input states. To achieve this,
one can also perform a Monte Carlo sampling of which
eigenvectors to prepare as input states. The weighting
factor for the sampling is given by the absolute value
of the eigenvalue. Since the system size is small in our
experiments but a high accuracy is desired, we measured
all eigenstates.

Results — The protocol has been tested on a 2-qubit
cnot and cphase gate [21, 22], on a 3-qubit Toffoli gate
[17, 23], and on the sequential application of two cphase
gates on three qubits. The cnot and the cphase gates
are particularly interesting for Monte Carlo process cer-
tification, since they map elements of the Pauli group
to other elements of the Pauli group. Such gates are
Clifford operations and their Choi matrices are stabilizer
states [14, 15] for which the number of relevant Pauli op-
erators is minimal with uniform relevance distribution.
For any stabilizer state ρ̂E there is a subgroup S of the
Pauli group with elements Ŝi such that the pure state
corresponding to ρ̂Eideal

is an eigenvector of all Ŝi with
eigenvalue +1. The expectation value of each operator in
this stabilizer group is +1. Therefore, the relevance dis-
tribution Pr(i) = 1/4n is uniform for all i ∈ {1, . . . , 4n}.
All other operators of the Pauli group have expectation
value zero, and therefore have no impact on the estima-
tion of the fidelity of a gate.

All experimentally realized gates have been character-
ized by calculation of their fidelity using Monte Carlo pro-
cess certification (FMC), unconstrained tomography data
(Ftom), and tomography data constrained by maximum-
likelihood estimation (FML).

The cnot gate, which changes the state of a target
qubit if the control qubit is in the state |1〉, is described
by a Choi matrix whose stabilizer group is generated by

M1 = σ̂x 1 σ̂x σ̂x,
M2 = σ̂z 1 σ̂z 1,
M3 = 1 σ̂x 1 σ̂x,
M4 = 1 σ̂z σ̂z σ̂z.

(6)

This indicates that, e.g. eigenstates of the σ̂x ⊗ 1 opera-
tor are mapped to eigenstates of the σ̂x⊗ σ̂x operator by
the cnot operation. A visualization of the expectation
value of the 16 Pauli operators with non-vanishing rele-
vance distribution is shown in Fig. 1(a). For the present

gate, the total number of different measurement settings
is 120, since for each of the 15 non-unity Pauli opera-
tors we prepare 4 different input states and measure 2
different operators (required only by the joint readout).
In contrast, the total number of different measurement
settings for process tomography is 4(2×2) = 256.

The cphase gate, which changes the phase of the |1〉
state of the target qubit by π if the control qubit is in
the state |1〉, has been characterized in a way similar to
the cnot gate as these gates are locally equivalent.

A sequence of 2 cphase gates first acting on qubits 1
and 2, and then on qubits 2 and 3 was characterized as
an example of a 3-qubit gate with a stabilizer state Choi
matrix. This Choi matrix has 43 = 64 Pauli operators
with non-vanishing expectation value. For each of these
operators we sample over 8 different eigenvectors by mea-
suring 4 different operator combinations (again, required
only by the joint readout), in total 2016 different mea-
surement settings, again without making use of random
sampling. In contrast, process tomography for any three-
qubit gate requires 42×3 = 4096 different measurement
settings.

Our implementation of the Toffoli gate [17] was also
characterized by Monte Carlo process certification and
process tomography. The Choi matrix of the Toffoli gate
is not a stabilizer state. Therefore, the list of relevant
Pauli operators has no group structure and the relevance
distribution Pr(i) is not uniform. We find that there are
232 Pauli operators with non-zero expectation value of 1
or ±0.5 out of 4096 possible ones. The total number of
different relevant experimental settings is 231 × 8 × 4 =
7392.

Even without random sampling, the total number of
measurements (including repeated measurements used
for averaging) to achieve a smaller error is less for Monte
Carlo process certification than for process tomography.
For the Monte Carlo process estimation, we averaged
each measurement setting ∼ 330 000 times, resulting in a
total number of ∼ 2.4× 109 measurements and an error
of the fidelity of 0.5%, whereas for the process tomogra-
phy we averaged each measurement setting for ∼ 790 000
times, resulting in a total number of ∼ 3.2 × 109 mea-
surements and an error of the fidelity of 3%. The mea-
surement outcomes for the different operators are shown
in Fig. 1(b).

All resulting fidelities are summarized in Table I. Er-
rors are stated as 90% confidence intervals. For Monte
Carlo process estimation the error was calculated by
Gaussian error propagation of the errors of the single
measurements. For the error of the process tomogra-
phy, the confidence interval of the distribution of fideli-
ties was calculated based on a resampling of the measure-
ment outcomes according to the inferred error statistics
of the experiments. All the fidelities found with Monte
Carlo process certification have tighter error bars than
the fidelities obtained from process tomography. This is
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FIG. 1. Measured expectation values of all the relevant observables of the (a) cnot gate and (b) Toffoli gate Choi matrices.
The thin border shows the ideal expected values, the colored squares are the estimated values extracted from measurements.
The (00, 00) and (000, 00000) entries are the expectations of the identity, so they have areas corresponding to absolute value
1 and the area of the other squares are adjusted proportionally. The column label corresponds to the most-significant digits
of the binary expansion of the index of the observable, while the row label corresponds to the least significant digits (see
supplementary information).

mainly due to the fact that the postprocessing for the
Monte Carlo certification only consists of averaging the
relevant measured values whereas full process tomogra-
phy must impose collective physical constraints on the
entire data set, and errors on the irrelevant observables
can only add to the errors relating to the relevant observ-
ables.

As discussed before, the significant advantage of Monte
Carlo process estimation is that one can estimate the fi-
delity of a process also without sampling over all relevant
Pauli operators, on the expense of a higher uncertainty.
If all relevant Pauli operators have been measured like in
our experiments, the only error in the fidelity is due to
the experimental uncertainty in the estimation of the dif-
ferent expectation values. In the case that an incomplete
set of Pauli operators is sampled, there is an additional
error. An asymptotic bound for this error is calculated
in the supplementary material of Ref. [5], and it is shown
that these bounds scale polynomially with the number
of measured samples. However, the bounds are not tight
and therefore too pessimistic to be used in the calculation
of error bars. The error in the fidelity estimate when per-
forming non-exhaustive sampling of the Pauli operators
can be obtained by non-parametric resampling methods
such as bootstrapping [24]. However, given that we have
measured all the relevant Pauli operators for each of the
gates we characterized, we can simply gather statistics

Gate FMC Ftom FML

cnot 81.7 ± 2.1% 80 ± 3% 79 ± 3%

cphase 86.6 ± 3.0% 86 ± 4% 83 ± 4%

2 cphases 65.0 ± 0.8% 67 ± 5% 67 ± 5%

Toffoli 68.5 ± 0.5% 70 ± 3% 69 ± 3%

TABLE I. Fidelities obtained by Monte Carlo process certi-
fication (FMC) compared to the values obtained with process
tomography (Ftom) and subsequent application of a maximum
likelihood algorithm (FML).
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FIG. 2. (a) Mean of the estimated average output fidelity
of a Toffoli gate as a function of the number of sampled ob-
servables. The error bars correspond to the 90% confidence
intervals, which in turns gives an estimate of the additional
error due to the non-exhaustive sampling of relevant observ-
ables. (b) The half-width of the 90% confidence intervals vs.
the corresponding number of samples.

for estimates with non-exhaustive sampling. The cor-
responding data for the Toffoli gate is shown in Fig. 2.
For our data one gets e. g. an additional error of 2% if
one only samples 100 Pauli operators or an additional
error of 3.2% for sampling only 50 Pauli operators. This
illustrates that Monte Carlo sampling leads to signifi-
cant reduction in the number of measurements required
to achieve a given error bound on the fidelities.

Conclusion — We showed how Monte Carlo process
certification can be implemented experimentally in a sys-
tem with three qubits and joint readout. This scheme is
generic and readily applicable to any qubit system. We
characterized the fidelity of two 2-qubit- and two 3-qubit
gates. All estimates of the gate fidelity for each of the
four gates are consistent, although Monte Carlo process
certification gives more accurate estimates of the fidelity
using fewer measurements. This shows that Monte Carlo
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process certification can be used as an independent proof
of the fidelity.
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P. J. Leek, L. Steffen, A. Blais, and A. Wallraff, Phys.
Rev. A 80, 043840 (2009).

[21] F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb,
J. R. Anderson, and F. C. Wellstood, Phys. Rev. Lett.
91, 167005 (2003).

[22] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop,
B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frun-
zio, S. M. Girvin, and R. J. Schoelkopf, Nature 460, 240
(2009).

[23] T. C. Ralph, K. J. Resch, and A. Gilchrist, Phys. Rev.
A 75, 022313 (2007).

[24] B. Efron, Biometrika 68, 589 (1981).

http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://dx.doi.org/10.1103/PhysRevLett.108.070502
http://stacks.iop.org/1367-2630/12/i=4/a=043034
http://stacks.iop.org/1367-2630/12/i=4/a=043034
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.106.230501
http://dx.doi.org/10.1103/PhysRevLett.107.210404
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/DOI: 10.1016/0034-4877(72)90011-0
http://dx.doi.org/DOI: 10.1016/0024-3795(75)90075-0
http://dx.doi.org/DOI: 10.1016/0024-3795(75)90075-0
http://pra.aps.org/abstract/PRA/v54/i4/p2614_1
http://pra.aps.org/abstract/PRA/v60/i3/p1888_1
http://pra.aps.org/abstract/PRA/v60/i3/p1888_1
http://dx.doi.org/10.1038/46503
http://dx.doi.org/ 10.1103/PhysRevLett.108.040502
http://dx.doi.org/ 10.1038/nature10713
http://dx.doi.org/ 10.1103/PhysRevLett.102.200402
http://dx.doi.org/ 10.1103/PhysRevLett.102.200402
http://dx.doi.org/ 10.1103/PhysRevLett.105.223601
http://dx.doi.org/10.1103/PhysRevA.80.043840
http://dx.doi.org/10.1103/PhysRevA.80.043840
http://dx.doi.org/ 10.1103/PhysRevLett.91.167005
http://dx.doi.org/ 10.1103/PhysRevLett.91.167005
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1038/nature08121
http://dx.doi.org/10.1103/PhysRevA.75.022313
http://dx.doi.org/10.1103/PhysRevA.75.022313
http://dx.doi.org/10.1093/biomet/68.3.589

	Experimental Monte Carlo Quantum Process Certification
	Abstract
	References


