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We describe an extension of single-qubit gate randomized benchmarking that measures the error of
multi-qubit gates in a quantum information processor. This platform-independent protocol evaluates
the performance of Clifford unitaries, which form a basis of fault-tolerant quantum computing. We
implemented the benchmarking protocol with trapped ions and found an error per random two-
qubit Clifford unitary of 0.162 ± 0.008, thus setting the first benchmark for such unitaries. By
implementing a second set of sequences with an extra two-qubit phase gate inserted at each step, we
extracted an error per phase gate of 0.069±0.017. We conducted these experiments with transported,
sympathetically cooled ions in a multi-zone Paul trap—a system that can in principle be scaled to
larger numbers of ions.

Quantum information processing (QIP) has the poten-
tial to solve difficult problems in many-body quantum
mechanics and mathematics that lack efficient algorithms
on classical computers. Useful QIP will require precise
control of many qubits (two-level quantum systems) and
implementation of quantum gates (operations that ma-
nipulate the quantum states of the qubits) with low error
per gate. Here, the error per gate (EPG) is ε = 1 − F ,
where F is the average gate fidelity defined as the uni-
form average over pure input states of 〈ψ|ρ|ψ〉, where ρ is
the actual density matrix and |ψ〉 is the intended output
state [1]. Practical fault-tolerant QIP will require EPGs
below a threshold of 10−4 [2, 3].

Currently, experiments have demonstrated the basic
techniques needed for QIP, including the manipulation of
small numbers of qubits and the implementation of the
required quantum gates [4]. Remaining primary chal-
lenges are to scale up to larger numbers of qubits and
to decrease the EPG below the fault-tolerant thresh-
old. This requires being able to efficiently character-
ize or “benchmark” the performance of multi-qubit QIP
experiments so as to extract the EPG of specific gates
and enable comparison between different quantum com-
puting platforms. With these goals in mind, we devel-
oped a benchmarking protocol for arbitrary numbers of
qubits and demonstrated an experimental implementa-
tion for two qubits. The protocol extends previous work
that used randomized sequences of Clifford gates to mea-
sure the EPG of one-qubit gates, first implemented in
Refs. [5, 6].

Compared to techniques such as process tomogra-
phy [7, 8], randomized benchmarking offers several key
advantages for characterizing EPGs of quantum gates.
It can determine EPGs with a number of measurements
that scales polynomially with the number of qubits [5, 9],
and, because it measures an exponential decay of fi-
delity as a function of the number of gates in a se-
quence, imperfections in state preparation and readout
do not limit the minimum EPG that one can measure.
Also, randomized benchmarking involves gates in the

context of long sequences of operations and therefore es-
tablishes an EPG within a computational context sim-
ilar to that expected in the implementation of lengthy
QIP algorithms. Therefore, randomized benchmarking
[5, 6] has been used to measure one-qubit gate errors in
trapped ions [5, 10], superconducting qubits [11, 12], liq-
uid NMR [6], and neutral atoms in an optical lattice [13]
reaching ε = 2.0(2)× 10−5 in [10].

Previous work has characterized two-qubit gates with
various techniques. With trapped ions, the fidelity
for creating a Bell state has been measured [14–18]
and process tomography was used to characterize sin-
gle and repeated applications of a two-qubit entangling
gate [19, 20]. Two-qubit gates have also been studied
in superconducting and photonic qubits (see Ref. [4] and
citations therein). In a liquid-state NMR system, a ran-
domized benchmarking technique was used to study the
errors of sequences of randomized gates on three nuclear
spins [6] and found EPGs of 0.0047(3). The gates were
randomly chosen in a platform-dependent way from a
special-purpose probability distribution where the proba-
bility of a two-qubit gate (the CNOT) was 1/3. However,
gate sets vary by platform, and other experiments may
choose different probability distributions, for example to
improve randomization. Therefore, the error probabili-
ties from Ref. [6] may be difficult to compare to those
obtained in future experiments.

The multi-qubit protocol we describe establishes a
platform-independent error per operation (EPO) for Clif-
ford unitaries by applying random sequences of Clifford
unitaries of varying lengths. Clifford unitaries are funda-
mental to most error-correcting procedures envisioned for
quantum computing (e.g., [21]) and thus serve as a foun-
dation on which universal fault-tolerant quantum com-
puting is built. The three main features of the group of
Clifford unitaries that make it useful for our purposes are
that its members have compact representations that can
be efficiently converted to circuits of elementary quantum
gates, outcomes of standard measurements of sequences
of Clifford unitaries can be efficiently predicted by classi-
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cal computation, and the group is sufficiently rich that er-
ror operators can be perfectly depolarized. Furthermore,
by defining an EPO for Clifford operators, the bench-
marking protocol allows for an unbiased comparison be-
tween different experimental platforms, even though each
experiment may implement the Clifford operators differ-
ently. For a system of n qubits, Clifford unitaries can be
constructed by combining one-qubit ±π

2
rotations, de-

fined as R̂u(±π/2) = e∓iπ
4
σu with u = x, y, about the x̂

and ŷ axes, and two-qubit CNOT gates. We consider two
gates or unitaries that differ only by a global phase to be
equivalent. For two qubits, there are 720 non-equivalent
Clifford gates (modulo Pauli operators on each qubit)
[22].
In addition to determining an EPO for Clifford oper-

ations, we determine the EPG of particular gates of our
choice by inserting them into the sequences of random
Clifford unitaries. Of particular interest are implemen-
tations of one of the standard universal two-qubit gates
such as the controlled-not (CNOT), phase gate (chosen
here) or square-root of swap.
The protocol introduced here improves and extends

a protocol based on random Clifford unitaries given in
Refs. [9, 23]. The main differences include randomiza-
tion of the final measurement to detect otherwise-hidden
error models, additional Pauli randomization throughout
to take advantage of good one-qubit gates, and a method
for characterizing individual gates by inserting them into
the protocol. This latter method for characterizing gates
has now been independently implemented with one su-
perconducting qubit [24]. The emphasis of Ref. [9] is
on the relationship between true gate fidelities and the
protocol-determined error probabilities, whereas here, we
focus on the EPO’s as useful system characteristics in
their own right.
Here gates are performed in a multi-zone ion trap [25].

The qubit states are the |F = 1,mF = 0〉 ≡ | ↑〉 and
|2, 1〉 ≡ | ↓〉 hyperfine states of 9Be+, where F and mF

are the total angular momentum quantum numbers. The
energy difference between these states is first-order insen-
sitive to magnetic-field fluctuations at the applied field of
0.011964T [20, 26]. The phase gate, Ĝ, is implemented
via a Mølmer-Sørensen gate (MS) [27], and acts as the di-
agonal matrix [1, i, i, 1] in the basis | ↑↑〉, | ↑↓〉, | ↓↑〉, and
| ↓↓〉. The experiment extends the work of [20] by using
longer sequences of gates and a different implementation
of the phase gate [28], which acts directly on a magnetic-
field-insensitive transition in 9Be+.
We trap four ions in a six-zone linear Paul trap: two

9Be+ ion qubits, and two 24Mg+ ions that are used to
sympathetically laser cool the qubit ions during the se-
quences. The ions form a linear chain along the axis
of the trap, which is the axis of weakest confinement.
Each experiment begins with the ions in the | ↓↓〉 state
and ends with a separate projective measurement of each
qubit in the | ↑〉, | ↓〉 basis [20].

Single-qubit rotations R̂u are implemented using co-
propagating laser beams with stimulated-Raman | ↓〉 ↔
| ↑〉 transitions on the 9Be+ ions after they are separated
and held in two different trap zones [20, 26, 29]. The
laser beam positions along the trap axis are controlled
with an acousto-optic deflector that allows the beams to
individually address ions in either trap zone. One-qubit
σz gates (used for Pauli randomization between Clifford
gates [22]) are implemented in software by shifting the
phase of all future rotations for that qubit [30]. Identity
gates are implemented with a wait time approximately
equal to the R̂u gate durations.

Two-qubit phase gates, Ĝ, are performed with
all four ions in the same trap zone, in the order
9Be+−24Mg+−24Mg+−9Be+. In contrast to the one-
qubit gates, non-copropagating laser beams are used for
the two-qubit gates. The MS gate is performed by the
simultaneous application of detuned blue and red side-
bands [27]. To implement Ĝ we surround a MS gate pulse
with carrier π/2-pulses on both ions [22]. The advantage
of using Ĝ as our elementary two-qubit gate rather than
the MS gate is that this three-pulse sequence is insensi-
tive to slow changes in the optical path-length difference
of the non-copropagating beams [28]. Before performing
each Ĝ gate we sympathetically laser-cool the four-ions,
first using Doppler and then Raman sideband cooling of
the 24Mg+ ions [20, 26, 29]. This ensures that each time
we implement Ĝ, the motional modes along the axial di-
rection are cooled to near the ground state. The cooling
light interacts only with 24Mg+ and thus preserves the
qubit state coherences. The ability to reinitialize the mo-
tional state is the key to performing long sequences with
multiple two-qubit gates in the presence of background
heating and heating due to ion transport and is likely
a necessary ingredient for scalable quantum computing
with trapped ions [30, 31].

Sequences of length l for randomized benchmarking are
generated as follows. For each l, many sequences of l ran-
dom Clifford unitaries are produced. At the end of each
such sequence, a randomized measurement step is added.
This step consists of a Pauli randomization followed by
a Clifford unitary that inverts the l preceding Clifford
steps. The final Clifford unitary is chosen independently
of the Pauli randomization. This ensures that in the
absence of errors, the final state is again in the computa-
tional basis but randomized. This randomization allows
us to detect certain otherwise-hidden error models such
as the catastrophic errors described in Ref. [9]. Which
basis element it should be in can be computed by use
of standard efficient methods for simulating sequences of
Clifford unitaries [32]. We compare our measurements of
each qubit at the end of each sequence to this expected
result to reveal errors.

For the experiment, we must determine an implemen-
tation of the Clifford unitaries in terms of the elemen-
tary gates available. For n-qubit gates, there exist effi-
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FIG. 1. The red circles show one minus the average probabil-
ity of measuring an error at the end of sequences of random
Clifford unitaries Ē(l) as a function of the sequence length
l in the two-qubit benchmarking experiment. By fitting the
data to the expression in Eq. (1) (red line), we find an error
per random Clifford unitary εg = 0.162(8). The prepara-
tion/measurement error, εm, is 0.086(22) (recall that mea-
surement error includes the error for an additional inverting
gate before detection). Blue squares show the results for run-

ning random sequences with an additional Ĝ inserted after
each Clifford unitary. Fitting this data to the same func-
tional form (blue line) and using Eq. 2 yields an error of
εĜ = 0.069(17) and εm = 0.132(26). The error bars in the
plot represent the standard deviation of the mean of the se-
quences’ frequency of correct measurement outcome. Error
bars for inferred parameters are based on bootstrap resam-
pling [22, 33].

cient algorithms that translate an arbitrary Clifford uni-
tary into order of n2/ log(n) elementary one- and two-
qubit gates [34, 35], each of which can then be mapped
into experimentally available operations. However, for
two qubits we used the following optimized strategy: By
listing compact circuits of one-qubit rotations and phase
gates Ĝ, we determined for each of the 720 Clifford uni-
taries (modulo Pauli matrices) a circuit with the min-
imum number of phase gates to implement the corre-
sponding Clifford unitary. On average, 1.5 phase gates
and 6.5 effective π

2
pulses (one times the number of π

2

pulses plus two times the number of π pulses about the
±x̂ or ±ŷ axes) are required per Clifford unitary includ-
ing the Pauli randomization.

The process of generating and implementing random
sequences at each length is repeated in order to ensure
randomization of the unitaries and their associated im-
plementation errors. For our two-qubit benchmarking
demonstration, we used the set of lengths {1, 2, 3, 4, 5, 6}
and generated between 15 and 55 random sequences of
each length. We implemented approximately 100 runs
for each sequence to determine its probability of error.

The experimental runs yield an average probability of

error E(l) for each length l shown in Fig. 1. To analyze
E(l) we start by assuming that each step’s error behaves
as a completely depolarizing channel (see, for example,
Ref. [36], pg. 378) characterized by error probability εg
independent of its gates or position in the sequence. Sim-
ilarly, we assume an overall error probability εm for state
preparation, the last inverting gate and its Pauli random-
ization, and measurement. In this case the mean of E(l)
with respect to repetitions of the experiment satisfies

Ē(l) =
1

αn

(

1− (1− αnεm)(1− αnεg)
l
)

(1)

where αn = 2
n

2n−1
(α2 = 4

3
for our two-qubit benchmark).

Fitting the average probability of error to the above equa-
tion (blue line Fig. 1) we find εg = 0.162(8). Assuming
that experimental observations are consistent with the
simple exponential behavior suggested by this formula,
we use it as the defining formula for the EPO of a ran-
dom Clifford unitary, regardless of the actual behavior of
errors. In particular, we associate the EPO with the de-
cay parameter of the error probabilities Ē(l) rather than
a particular exact parameter of the underlying physical
errors. If the simple depolarizing assumption does not
hold, then Ē(l) may exhibit non-exponential and tran-
sient behaviors; however, the randomization is intended
to induce behavior that matches the one implied by this
assumption. In the experiment we were not able to im-
plement sufficiently long sequences to clearly observe sta-
tionary behavior or to determine the extent to which the
behavior is nonstationary [22].

To isolate the EPG of the phase gate Ĝ we generated a
second set of sequences by inserting Ĝ after each random
Clifford unitary. The final inverting Clifford unitary is
chosen in the same way as before, taking into account
the effect of the additional Ĝ gates to ensure that the fi-
nal state is a predictable computational basis state in the
absence of errors. The average probability of error mea-
sured for the implementation of this experiment should
also satisfy Eq. 1, but with a different value of εg due
to the additional operation in each step. In an ideal ex-
periment εm should be the same, but the model must
take into consideration that it might have changed, for
example due to experimental drifts. The EPG is given
by

εG =
1

αn

(

1−
1− αnε

′
g

1− αnεg

)

, (2)

where ε′g is the probability of error of a step consisting

of a random Clifford gate with an extra Ĝ inserted.

The blue data points and curve in Fig. 1 show the
results from the Ĝ benchmark. Curve-fitting and solv-
ing the above equations for ε

Ĝ
give an EPG of ε

Ĝ
=

0.069(17). The EPG for our particular choice of Ĝ in
these experiments shows no improvement over the gates



4

FIG. 2. Black circles and blue squares show one minus the
average probability of error for each qubit in the single-qubit
benchmarking experiment. The solid lines are the best fits of
the data to Eq. 1 with n = 1 [5]. The best fit values for εg

give the error per step (as defined in the text for the single-
qubit benchmark), which we find to be 0.010(2) and 0.007(2),
respectively.

used in [20], but applies to gates used in computationally
relevant contexts in longer sequences.

The main sources of error in the phase gates are due to
drifts in the laser beam intensities at the ions’ positions,
which we estimate to contribute an error of up to 0.03.
We estimate spontaneous emission [37, 38] contributes
an error probability of 0.013 to the phase gate. Including
other known sources of errors predicts an overall error less
than what we measure [22]. This suggests that our model
of errors for the phase gate is incomplete.

As an independent check on phase-gate fidelity, we
measured the state fidelity for a Bell state created by use
of the phase gate Ĝ as in [14, 15, 18]. We determined an
error in the Bell state of 0.09(2), which is consistent with
the EPG determined by the benchmark. The Bell state
error includes additional errors due to three single-qubit
rotations on each ion needed to create and analyze the
Bell state.

We also performed a benchmark to determine the er-
ror in the single-qubit gates. We did not implement the
protocol for benchmarking Ĝ described above, but used
the standard one-qubit benchmarking protocol of [5]. In
this protocol the length of a sequence is the number of
computational gates that consist of a Pauli gate (π-pulse)
followed by a Clifford gate (π

2
-pulse) on each qubit. The

gate sequence is followed by a Pauli gate and Clifford
gate chosen to yield a predictable measurement outcome
in the | ↑〉, | ↓〉 basis for each qubit. The Pauli gates
are chosen with equal probability to be rotations about
the x̂, ŷ or ẑ axis or the identity. The Clifford gates are
chosen with equal probability to be π

2
-pulses about the x̂

or ŷ axis.

Benchmarks were performed on each qubit in parallel.

The results shown in Fig. 2 were executed in one set, after
all of the two-qubit benchmarks and following a recali-
bration of the one-qubit gates. The number of sequences
implemented was 15, 13, 6, 13, 12, 14 for sequence lengths
of 2, 3, 4, 6, 8, 12, respectively. We ran each sequence ap-
proximately 100 times. In order to replicate the condi-
tions of the experiment for the two-qubit benchmark the
ions were recombined into a single trap zone in each step,
recooled and then held for approximately the same dura-
tion required to execute Ĝ before being separated again
for application of single-qubit computational gates in the
next sequence step. The inferred one-qubit errors per
step are 0.010(2) and 0.007(2) for the respective qubits.
The EPG for the single-qubit gates combined with the
inferred EPG for Ĝ is consistent with the measured EPO
for the two-qubit Clifford operations [22].

Clifford benchmarks as described here can serve as a
platform-independent strategy for comparing the qual-
ity of quantum operations in a computational context.
When benchmarking n qubits, we suggest that the bench-
marks are applied to different subsets of the qubits so
that comparable EPOs are obtained for n = 1, 2, 3, . . .
qubits. In this way the results can be compared to other
experimental platforms that have different numbers of
available computational qubits and can also be used for
investigating differences in behavior that depend on (for
example) geometrical relationships between qubits.

In summary, we have described a protocol for random-
ized benchmarking of gates in a quantum information
processor and implemented the protocol experimentally
on two qubits to measure the error per operation of arbi-
trary two-qubit Clifford unitaries. The protocol we pro-
pose is independent of the gate set that is experimen-
tally implemented and so can provide an easily portable
method for evaluating the performance of Clifford uni-
taries on different physical platforms. Furthermore, with
this method it is straightforward to isolate the fidelity of
a specific two-qubit gate. Looking ahead, this random-
ized benchmarking protocol should prove useful as differ-
ent experimental implementations of quantum informa-
tion processors look to increase the number of qubits and
work to decrease the errors towards what is required for
fault-tolerance.
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