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In quantum mechanics, the Heisenberg uncertainty relations and the Cramér-Rao inequalities
typically limit the precision in the estimation of a parameter through the standard deviation of
a conjugate observable. Here we extend these relations by giving a bound to the precision of a
parameter in terms of the expectation value of the conjugate observable. This has both foundational
and practical consequences: in quantum optics it resolves a controversy on which is the ultimate
precision in interferometry.
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Quantum mechanics limits the accuracy with which
one can measure conjugate quantities: the Heisenberg
uncertainty relations [1, 2] and the quantum Cramér-Rao
inequality [3–6] show that no procedure for estimating
the value of some quantity (e.g., a relative phase) can
have a precision that scales more accurately than the in-
verse of the standard deviation of a conjugate quantity
(e.g., the energy) evaluated on the state of the probing
system. This paper exhibits a new bound on quantum
measurement: we prove that the precision of measuring
a quantity cannot scale better than the inverse of the
expectation value (above a ‘ground state’) of the conju-
gate quantity. We use the bound to resolve an outstand-
ing problem in quantum metrology [7]: in particular, we
prove the longstanding conjecture of quantum optics [8–
13] – recently challenged [14–16] – that the ultimate limit
to the precision of estimating phase in interferometry is
bounded below by the inverse of the total number of pho-
tons employed in the interferometer.
The statistical nature of quantum mechanics induces

fluctuations that limit the ultimate precision which can
be achieved in the estimation of any parameter x. These
fluctuations can be connected to the properties of a con-
jugate operator H that generates translations Ux = eixH

of the parameter x. In particular, if the encoding stage is
repeated several times using ν identical copies of the same
probe input state ρx, the root mean square error (RMSE)
∆X of the resulting estimation process is limited by the
quantum Cramér-Rao bound [3–6] ∆X > 1/

√

νQ(x),
where Q(x) is the quantum Fisher information. For pure
probe states and unitary encoding mechanism Ux, Q(x)
is equal to the variance (∆H)2 (calculated on the probe
state) of the generator H . In this case, the Cramér-Rao
bound takes the form

∆X > 1/(2
√
ν∆H) (1)

of an uncertainty relation [5, 6]. This bound is asymp-
totically achievable in the limit of ν → ∞ [3, 4]. If the
parameter x can be connected to an observable, Eq. (1)
corresponds to the Heisenberg uncertainty relation for
conjugate variables [1, 2]. (Note that we can also exploit
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FIG. 1: Lower bounds to the precision estimation ∆X as a
function of the experimental repetitions ν. The green area in
the graph represents the forbidden values due to our bound
(2). The blue (dashed-line) area represents the forbidden val-
ues due to the Cramér-Rao bound, or the Heisenberg uncer-
tainty, (1). Possible estimation strategies have precision ∆X
that cannot penetrate in the colored regions. For large ν the
Cramér-Rao bound (which scales as 1/

√
ν) is stronger, as ex-

pected since in this regime it is achievable. Our bound is not
achievable in general, so that the green area may be expanded
when considering specific estimation strategies. [Here we used
〈H〉 − E0 = 0.1 (a.u.) and ∆H = 4 (a.u.).]

quantum “tricks” such as entanglement and squeezing in
optimizing the state preparation of the probe and/or the
detection stage [17].)
Here we will derive a bound in terms of the expectation

value 〈H〉 ofH , which in the simple case of constant ∆X ,
takes the form (see Fig. 1)

∆X > κ/[ν(〈H〉 − E0)] , (2)

where E0 is the value of a “ground state”, the minimum
eigenvalue of H whose eigenvector is populated in the
probe state (e.g. the ground state energy when H is the
probe’s Hamiltonian), and κ ≃ 0.091 is a constant of or-
der one. We stress that, due to the presence of the factor
ν, the quantity at the denominator of (2) is associated to
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the global generator of translations of the ν copies. The
inequality (2) holds both for biased and unbiased mea-
surement procedures, for pure and mixed probe states,
and it is is consistent with the recent bounds [18] on the
number of distinguishable states crossed by the evolution
Ux. As discussed in the following, the bound holds for
“good” estimation strategies that provide enough infor-
mation on the parameter x [19]. Note also that the rhs
of (2) diverges for 〈H〉 → E0 because, if the probe is
in the ground state of the generator H , its final state is
independent of x and provides no information on it.
The bound (2) must be modified for procedures where

∆X explicitly depends on x, as in the examples discussed
in Refs. [14, 15]: a constraint of the form (2) is placed on
the average value of ∆X(x). Specifically given any two
values x and x′ of the parameter which are sufficiently
separated, one has

∆X(x) + ∆X(x′)

2
>

κ

ν(〈H〉 − E0)
. (3)

Hence, even though we cannot exclude that strategies
whose error ∆X depend on x may have a “sweet spot”
where the bound (2) may be beaten [14, 15], Eq. (3)
shows that the average value of ∆X is subject to a bound
that scales as the inverse of ν(〈H〉 − E0). As a conse-
quence, these strategies are of no practical use, since the
sweet spot depends on the unknown parameter x to be
estimated and the extremely good precision in the sweet
spot must be counterbalanced by a correspondingly bad
precision nearby.
Proving Eq. (2) in full generality is clearly not a trivial

task since no definite relation can be established between
ν(〈H〉 −E0) and the term

√
ν∆H on which the Cramér-

Rao bound is based. In particular, scaling arguments on
ν cannot be used since, on one hand, the value of ν for
which Eq. (1) saturates is not known (except in the case
in which the estimation strategy is fixed [8], which has
little fundamental relevance) and, on the other hand, in-
put probe states ρ whose expectation values 〈H〉 depend
explicitly on ν may be employed, e.g. see Ref. [15]. To cir-
cumvent these problems our proof is based on the quan-
tum speed limit [20], a generalization of the Margolus-
Levitin [21] and Bhattacharyya bounds [22, 23] which
links the fidelity F [24] between the two joint states
ρ⊗ν
x and ρ⊗ν

x′ to the difference x′ − x of the parameters
x and x′ imprinted on the states through the mapping
Ux = e−ixH [25]. In the case of interest here, the quan-
tum speed limit [20] implies

|x′ − x| > π

2
max

[

α(F )

ν(〈H〉 − E0)
,

β(F )√
ν∆H

]

, (4)

where the ν and
√
ν factors at the denominators arise

from the fact that here we are considering ν copies of the
probe states ρx and ρx′ , and where α(F ) ≃ β2(F ) =
4 arccos2(

√
F )/π2 are decreasing functions defined in

[20]. The inequality (4) tells us that the parameter dif-
ference |x′ − x| induced by a transformation e−i(x′−x)H

which employs resources 〈H〉 − E0 and ∆H cannot be
arbitrarily small (when the parameter x coincides with
the evolution time, this sets a limit to the “speed” of the
evolution, the quantum speed limit).
We now give the main ideas of the proof of (2) by

focusing on a simplified scenario, assuming pure probe
states |ψx〉 = Ux|ψ〉, and unbiased estimation strate-
gies constructed in terms of projective measurements
with RSME ∆X that do not depend on x. The de-
tailed proof is given in [26], where these restrictions are
dropped. For unbiased estimation, x =

∑

j Pj(x)xj and
the RMSE coincides with the variance of the distribution
Pj(x), i.e. ∆X =

√

∑

j Pj(x)[xj − x]2, where Pj(x) =

|〈xj |ψx〉⊗ν |2 is the probability of obtaining the result xj
while measuring the joint state |ψx〉⊗ν with a projective
measurement on the joint basis |xj〉. Let us consider two
values x and x′ of the parameter that are further apart
than the measurement’s RMSE, i.e. x′ − x = 2λ∆X for
a λ & 1 that will be specified later. If no such x and
x′ exist, the estimation is extremely poor: basically the
whole domain of the parameter is smaller than (or of
the same order of) the RMSE. Hence, we can always as-
sume that such a choice is possible for estimation strate-
gies that are sufficiently accurate to be of interest, as
discussed in detail below. The Tchebychev inequality
states that for an arbitrary probability distribution p,
the probability that a result x lies more than λ∆X away
from the average µ is upper bounded by 1/λ2, namely
p(|x − µ| > λ∆X) 6 1/λ2. It implies that the prob-
ability that measuring |Ψx′〉 := |ψx′〉⊗ν the outcome
xj lies within λ∆X of the mean value associated with
|Ψx〉 := |ψx〉⊗ν cannot be larger 1/λ2. By the same rea-
soning, the probability that measuring |Ψx〉 the outcome
xj will lie within λ∆X of the mean value associated with
|Ψx′〉 cannot be larger 1/λ2. This implies that the overlap
between the states |Ψx〉 and |Ψx′〉 cannot be too large:
more precisely, F = |〈Ψx|Ψx′〉|2 6 4/λ2. Replacing this
expression into (4) (exploiting the fact that α and β are
decreasing functions) we obtain

2λ∆X >
π

2
max

[

α(4/λ2)

ν(〈H〉 − E0)
,
β(4/λ2)√
ν∆H

]

, (5)

whence we obtain (2) by optimizing over λ the first term
of the max, i.e. choosing κ = supλ π α(4/λ

2)/(4λ) ≃
0.091, maximized for λ ≃ 4.09. The second term of
the max gives rise to a quantum Cramér-Rao type un-
certainty relation (or a Heisenberg uncertainty relation)
which, consistently with the optimality of Eq. (1) for
ν ≫ 1, has a pre-factor πβ(4/λ2)/(4λ) which is smaller
than 1/2 for all λ. This means that for large ν the bound
(2) will be asymptotically superseded by the Cramér-Rao
part, which scales as ∝ 1/

√
ν and is achievable in this

regime. In other words, when it is physically significant,
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the Cramér-Rao bound always wins over the bound (2).

Analogous results can be obtained (see [26]) when con-
sidering more general scenarios where the input states of
the probes are not pure, the estimation process is biased,
and it is performed with arbitrary (possibly adaptive)
POVM measurements. [In the case of biased measure-
ments, the constant κ in (2) and (3) must be replaced
by κ = supλ πα(4/λ

2)/[4(λ+1)] ≃ 0.074 (maximized for
λ ≃ 4.64) where a +1 term appears in the denomina-
tor.] In this generalized context, whenever the RMSE
depends explicitly on the value x of the parameter, the
result (2) derived above is replaced by the weaker re-
lation (3). Such inequality clearly does not necessarily
exclude the possibility that at a “sweet spot” the esti-
mation might violate the scaling (2) , as happens e.g. in
the strategies of [14, 15], which are, hence, fully com-
patible with our bounds. However, Eq. (3) is still suffi-
cient strong to exclude accuracies of the form ∆X(x) =
1/R(x, ν〈H〉) where, as in Refs. [15, 27], R(x, z) is a func-
tion of z which, for all x, increases more than linearly,
i.e. limz→∞ z/R(x, z) = 0.

The bound (2) has been derived under the explicit as-
sumption that x and x′ exists such that x′ − x = 2λ∆X
for some λ ≃ 4.09, which requires one to have x′ − x >

2∆X . This means that the estimation strategy must be
good enough: the probe is sufficiently sensitive to the
transformation Ux that it is shifted by more than ∆X
during the interaction. The existence of pathological esti-
mation strategies which violate such condition cannot be
excluded a priori. Indeed trivial examples of this sort can
be easily constructed, a fact which may explain the com-
plicated history of the Heisenberg bound with claims [8–
13] and counterclaims [14–16, 27]. It should be stressed
however, that the assumption x′ − x > 2∆X is always
satisfied except for extremely poor estimation strategies
with such large errors as to be practically useless. One
may think of repeating such a poor estimation strategy
ν > 1 times and of performing a statistical average to
decrease its error. However, for sufficiently large ν the
error will decrease to the point in which the ν repetitions
of the poor strategy are, collectively, a good strategy, and
hence again subject to our bounds (2) and (3).

Our findings are particularly relevant in the field of
quantum optics, where a controversial and long debated
problem [8–16, 27] is to determine the scaling of the ulti-
mate limit in the interferometric precision of estimating
a phase as a function of the total average energy devoted
to preparing the ν copies of the probes: it has been con-
jectured [8–13] that the phase RMSE is lower bounded
by the inverse of the total number of photons employed
in the experiment, the “Heisenberg bound” for interfer-
ometry [28]. It corresponds to an equation of the form
of Eq. (2), choosing x = φ (the relative phase between
the modes in the interferometer) and H = a†a (the num-
ber operator). Scalings of this sort have been established
for some redefinitions of the uncertainty measure [3] or

for specific detection strategies [29] (see e.g. Ref. [30–
32] and references therein), while its achievability for the
RMSE measure has been recently proven in [33]. Still its
general validity for the RMSE has been questioned sev-
eral times [14–16, 27]. In particular schemes have been
proposed [15, 27] that apparently permit better scalings
in the achievable RMSE (for instance ∆X ≈ (ν〈H〉)−γ

with γ > 1). None of these protocols have conclusively
proved such scalings for arbitrary values of the parame-
ter x, but a sound, clear argument against the possibility
of breaking the γ = 1 scaling of Eq. (2) was missing up
to now. Our results validate the Heisenberg bound by
showing that it applies to all those estimation strategies
whose RMSE ∆X does not depend on the value of the
parameter x, and that the remaining strategies can have
good precision only for isolated values of the unknown
parameter x.

After the appearance of the first version of our
manuscript, related papers have appeared where the
bounds derived here are analyzed in the presence of non
trivial prior information [34, 35]. Moreover, for optical
interferometry our findings have been strengthened in
Ref. [36] and a compatible bound dependent on the prior
info was obtained through rate distortion theory in [37].

We acknowledge useful feedback from D.Berry,
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