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The Cauchy-Schwarz (CS) inequality — one of the most widsgdiand important inequalities in mathematics
— can be formulated as an upper bound to the strength of abme$ between classically fluctuating quantities.
Quantum mechanical correlations can, however, exceedicédounds. Here we realize four-wave mixing of
atomic matter waves using colliding Bose-Einstein conds and demonstrate the violation of a multimode
CS inequality for atom number correlations in opposite samiethe collision halo. The correlated atoms have
large spatial separations and therefore open new opptesifior extending fundamental quantum-nonlocality
tests to ensembles of massive particles.
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The Cauchy-Schwarz (CS) inequality is ubiquitous in math-
ematics and physics [1]. Its utility ranges from proofs ofiba
theorems in linear algebra to the derivation of the Heisembe
uncertainty principle. In its basic form, the CS inequatiiy-
ply states that the absolute value of the inner product of two
vectors cannot be larger than the product of their lengths. |
probability theory and classical physics the CS inequality
be applied to fluctuating quantities and states that theatape
tion value of the cross-correlatidi, I>) between two quanti-
tiesI; andl, is bounded from above by the auto-correlations

in each quantity:
(I I2)| < \JIP)I3). 1)

This inequality is satisfied, for example, by two classiaatc
rents emanating from a common source.

In quantum mechanics, correlations can, however, béigure 1. (Color online) Diagram of the collision geomei() Two
stronger than those allowed by the CS inequality [2—4]. Sucl§igar-shaped condensates moving in opposite directiamsgathe
correlations have been demonstrated in quantum opticg,usinax'al directionz shortly after their creation by a Bragg laser pulse

X . the anisotropy and spatial separation are not to scal¢)Sgheri-
for example, antibunched photons produced via Spontaneoégl halo of scattered atoms produced by four-wave mixingrdfte

emission [5], or twin photon beams generated in a radiativg|oyg expands and the atoms fall to the detedtocm below. Dur-
cascade [6], parametric down conversion [7] and opticatfou ing the flight to the detector, the unscattered condensatpsira a
wave mixing [8]. Here the discrete nature of the light anddisk shape shown in white on the north and south poles of tite ha
the strong correlation (or anticorrelation in antibungf)ibe-  The (red) boxed and2 illustrate a pair of diametrically symmetric
tween photons are responsible for the violation of the CS incounting zones (integration volumes) for the average earss auto-
equality. The violation has even been demonstrated for twgorrelation functionsG iz andGy; (i = 1,2) (see text), used in the
light beams detected as continuous variables [8]. analysis of the Cauchy-Schwarz inequality.

In this work we demonstrate a violation of the CS inequal-
ity in matter-wave optics using pair-correlated atoms fedm
in a collision of two Bose-Einstein condensates (BECs) ofmation of quantum states that exhibit the Einstein-Pogelsk
metastable helium [9-12] (see Fig. 1). The CS inequalityRosen (EPR) correlations or violate a Bell's inequality. [3]
which we study is anultimodenequality, involving integrated The EPR and Bell-state correlations are of course of wider
atomic densities, and therefore is different from the tgpic significance to foundational principles of quantum mecbsni
two-mode situation studied in quantum optics. Our resultghan those that violate a CS inequality. Nevertheless,ithe i
demonstrate the potential of atom optics experiments to exportance of understanding the CS inequality in new physical
tend the fundamental tests of quantum mechanics to enserregimes lies in the fact thati)(they are the simplest possible
bles of massive particles. Indeed, violation of the CS it¢qu tests of stronger-than-classical correlations, andtfey can
ity implies the possibility of (but is not equivalent to) for be viewed as precursors, or necessary conditions, for the mo




strict tests of quantum mechanics. halo [see Fig. 1(b)] whose radius in velocity space is abuait t

The atom-atom correlations resulting from the collisiod an recoil velocity [11, 20]. The scattered atoms fall onto aedet
violating the CS inequality are measured after long time-+or that records the arrival times and positions of indialdu
of-flight expansion using time- and position-resolved atomatoms [13] with a quantum efficiency ef 10%. The halo di-
detection techniques unique to metastable atoms [13]. Thameter in position space at the detectori&cm. We use the
307 ms long expansion time combined with a large collisionarrival times and positions to reconstruct 3D velocity vest
and hence scattering velocity results in-& cm spatial sep- v for each atom. The unscattered BECs locally saturate the
aration between the scattered, correlated atoms. This sepdetector. To quantify the strength of correlations coroesp
ration is quite large compared to what has been achieved img only to spontaneously scattered atoms, we exclude from
recent related BEC experiments based on double-well or twathe analysis the data points containing the BECs and their im
component systems [14—16], trap modulation techniquds [17mediate vicinity (v.| < 0.5 v,¢.) and further restrict ourselves
or spin-changing interactions [18, 19]. This makes the BEQo a spherical shell of radial thickne8s) < v, /vy < 1.1
collisions ideally suited to quantum nonlocality testngsil- ~ (where the signal to noise is large enough), defining thé tota
tracold atomic gases and the intrinsic interatomic intdosas.  volume of the analysed region &3.x-

In a simple two-mode quantum problem, described by bo- Using the atom arrival and position data, we can mea-
son creation and annihilation operat@fsand a; (1 =1,2), sure the second-order correlation functions between tira at
the Cauchy-Schwarz inequality of the form of Eq. (1) can benumber densitieg:(k) at two points in momentum space,
formulated in terms of the second-order correlation fongi G (k, k') = (:7(k)n(k’):) [21], with k denoting the wave-

GE? = (1 N, 1) = (d;fd;djdi> and reads [2—4] vectork = mv/h and ik the momentum. The correlation
measurements are averaged over a certain counting zone (in-
Gg) < [Gﬁ)Gg)]l/Q, (2)  tegration volumeV) on the scattering sphere in order to get
_ @ @) . _ @ @ statistically significant results. By choosikg to be nearly
or simply Gy’ <Gy’ in the symmetric case @¥,, = G5y . opposite or nearly collinear tk, we can define the averaged

Here,Gg? = Gg‘?, f; = ala; is the particle number oper- back-to-back (BB) or collinear (CL) correlation functions

i

ator, and the double colons indicate normal ordering of the

creation and annihilation operators, which ensures thecor Gim(Ak) = / d°k G (k, —k + Ak), 3)
guantum-mechanical interpretation of the process of detec v
tion of pairs of particles that contribute to the measuremen ggL)(Ak) — / Bk 9(2)(k, k + Ak), (4)
of the second-order correlation function [2]. Strongearth v

classical correlation violating this inequality would e  which play a role analogous to the cross- and auto-coroslati
Gg) > [Gﬁ)Gg)]l/Q, orGg) >G§21) in the symmetric case. functions,Gg) and Gl(.f), in the simple two-mode problem

The situation we analyse here is counterintuitive in thatdiscussed above. The BB and CL correlations are defined as
we observe a peak cross-correlation (for pairs of atoms scatunctions of the relative displacemeat, while the depen-
tered in opposite directions) that is smaller than the pe#d-a dence ork is lost due to the averaging.
correlation (for pairs of atoms propagating in the same di- The normalised BB and CL correlations functions,
rection). In a simple two-mode model such a ratio of theg](f]%(Ak) andggL)(Ak), averaged over the unexcised part of
cross- and auto-correlations satisfies the classical Gftiale  the scattering sphené,,;, are shown in Fig. 2. The BB cor-
ity. However, in order to adequately treat the atom-atom correlation peak results from binary, elastic collisions begw
relations in the BEC collision problem, one must generaliseatoms, whereas the CL correlation peak is a variant of the
the CS inequality to a multimode situation, which takes intoHanbury Brown and Twiss effect [22, 23]—a two-particle
accountthe fact that the cross- and auto-correlationsttera interference involving members of two different atom pairs
wave optics are usuallgnctions(in our case of momentum). [9, 10, 24, 25]. Both correlation functions are anisotrdpee
The various correlation functions can have different wédth cause of the anisotropy of the initial colliding condensate
and peak heights, and one must define an appropriate inte- An important difference with the experiment of Ref. [9] is
gration domain over multiple momentum modes to recover athat the geometry in the present experiment (with vertycall
inequality that plays the same role as that in the two-modelongated condensates) is such that the observed widthe of t
case ands actually violated, as we show below. correlation functions are not limited by the detector rasoh.

The experimental setup was described in Refs. [11, 12]Here we now observe that the BB and CL correlations have
Briefly, a cigar-shaped BEC of metastable helium, containvery different widths, with the BB width being significantly
ing approximately~ 10° atoms, trapped initially in a har- larger than the CL width. This broadening is largely due o th
monic trapping potential with frequenciés,, w,,w,)/2mr =  size of the condensate in the vertical directieni(mm). The
(1500, 1500, 7.5) Hz, was split by Bragg diffraction into two elongated nature of the cloud and the estimated temperature
parts along the axialzf) direction [see Fig. 1(a)], with ve- of ~ 200 nK also means that the condensates correspond in
locities differing by twice the single photon recoil veltci  fact to quasicondensatg26] whose phase coherence length
vree = 9.2 cM/s. Atoms interact via binary, momentum con- is smaller than the size of the atomic cloud. The broadening
servings-wave collisions and scatter onto a nearly sphericabf the BB correlation due to the presence of quasicondesisate
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Figure 3. (Color online) Correlation coefficie6t as a function of
the number of zoned/ = Vaaca/V1 into which we cut the scatter-
ing sphere.C’ > 1 corresponds to violation of the Cauchy-Schwarz
inequality. The scattering sphere was cut i&tpolar and fron®2 to

80 azimuthal zones; the resulting arrangement of zonedfet 16
and32 is illustrated in the upper panel. The observed value&s fir
pairs of correlated diametrically opposite zones (showreéhin the
upper panel as an example) were averaged to get one datdqrant
given M ; the data points for such zones are shown as red circles, for
uncorrelated (neighbouring) zones—as blue squares. Toelars
show the standard deviation of the mean over the number @& zon
pairs. The (green) solid line is the theoretical predic{@h] calcu-
lated using the experimental parameters and a stochagjiaiBbov
approach [20, 28].

Figure 2. (Color online) Normalized back-to-back (a) andiear
(b) correlation functionsg()(Ak) and ¢ (Ak), in momentum

space integrated ov&faa.. corresponding tk=| < 0.5k and  ¢410ing two distinct paths and therefore can be assodiate
0.9 < kv /krec < 1.1, wherek,ec = murec/h is the recoil momen-

tum. The data is averaged ow#00 experimental runs. Due to the with the cross-correlati(_)n func_tion_bet\{veen _the resp_e(rtio-
cylindrical symmetry of the initial condensate and of themli ge- ~ Menta. Hence we reallse a situation in which one is tempted
ometry of the collision, the dependence onhendk, components  t0 apply the CS inequality to the peak values of these corre-
should physically be identical and therefore can be contb{ager- lation functions. As we see from Fig. 2, if one naively uses
aged); the correlation functions can then be presented aufBce  only the peak heights, the CS inequalitynist violated since

plots on the k., k.,) plane. The 2D plots were smoothed with a (2) (2) (2) (2)
nearest neighbouryrunning average. The data points alerig tnd gBB(O). < gCL(O) and hen_cegBB(O) < Gey,(0) due to the
k= projections (corresponding to thin slices centred.gt= 0 and nearly identical normalisation factors_ [21]. o

k. = 0, respectively) are not smoothed. The solid lines show the e can, however, construct a CS inequality isatiolated
Gaussian fits to these projections. The peak height of the-teac  jf we use integrated correlation functior@l(»j), that corre-
back correlation function is- 1.2 while that of the collinear corre- dto at bery, — Prat) ak) (i — 1.2
lation function is~ 1.4, apparently confirming the Cauchy-Schwarz §p0n (,)‘Fflom numoecrs; = fv@- rRa (k)a(k) (i = 1,2)
inequality. The widths of the two distributions are, howeueery N two distinct zones on the collision halo [21]:

different GBB,« ~ o8B,y =~ 0.21kcc, 08B, =~ 0.019k;cc, Whereas .

ocL,e ~ ocL,y = 0.036kyec, ocL,» =~ 0.002k.e.) and a multimode =2 NN 3 31/ (2) /
formulation of the Cauchy-Schwarz inequality, which retathe rel- Gij = ( NilVy ) = /Vl.d k/y.d kG k). ()
ative volumes of the correlation functioris violated. ’

The choice of the two integration (zone) volumgsandV;

. —(2) .
will be discussed in another paper [27], but we emphasige th .eter.mmeéLwhe_th’er t@iﬂ'l -fyncftlon gorresgondssto tzef’B
the CS inequality analysed here is insensitive to the atail \' 7 J) OF CL (i = j) correlation functions, Egs. (3) and (4).
broadening mechanism as it relies on integrals over correla 11€ CS inequality that we can now analyse for violation

—(2 —(2)=(2 . :
tion functions. This is one of the key points in considering t readsg§2) < 51) éz)]l/z. To quantify the degree of viola-
multimode CS inequality. tion, we introduce a correlation coefficient

Since the peak of the CL correlation function corresponds ) s
to a situation in which the two atoms follow the same path, C = 352)/[551@&2)]1/27 (6)

we can associate it with the auto-correlation of the momen-
tum of the particles on the collision sphere. Similarly, thewhich is smaller than unity classically, but can be larganth
peak of the BB correlation function corresponds to two atomsunity for states with stronger-than-classical correlagio
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CS inequality is not violated. The figure also shows the tesul DESINA and ProQuP.
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Bogoliubov approach (green line) [20, 21, 28]. The calcula-
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