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We consider the impact of the elastomer network on the nematic structure and fluctuations in
isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of
network compliance. The model contains a network-mediated nonlocal interaction as well as a new
kind of random field that reflects the memory of the nematic order present at cross-linking, and also
encodes local anisotropy due to localized polymers. This model enables us to predict a regime of
short-ranged oscillatory spatial correlations (both thermal and glassy) in the nematic alignment.
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Consider a melt or solution of nematogenic polymers,
by which we mean long, flexible polymers carrying rod-
like units. These units, which give the system the pos-
sibility of exhibiting liquid crystallinity, may be inte-
grated along the polymer chain backbones (the main-
chain case) or in groups that dangle from the backbone
(the side-chain or pendant case). Now consider the pro-
cess of instantaneous cross-linking. Here, one begins with
the melt or solution at equilibrium and—so rapidly that
hardly any relaxation has time to occur—one introduces
permanent bonds between some random fraction of the
pairs of chain segments that happen, at the instant of
cross-linking, to be nearby one another. When the cross-
linking process is carried out in the isotropic state of the
nematogens, the resulting material is called an isotropic-
genesis nematic elastomer (or IGNE; see Refs. [1–3]).
The IGNE is a macroscopic random network medium
that “memorizes” both the positions of the chain seg-
ments and the orientations of the nematogen units at the
instant of cross-linking. This memorization is, however,
only partial, as a result of the thermal fluctuations that
occur in the new, post-cross-linking equilibrium state.

Several prior approaches to the liquid crystallinity of
such materials [4–7] have assumed the presence of a ran-
dom field that is attached to an elastically deformable
medium, but they ignore the following two facts: (i) the
medium is itself liquid-like at short lengthscales, owing
to thermal position fluctuations of the network chain seg-
ments; and (ii) the random field is influenced by the
configuration of nematic alignments at the instant of
cross-linking, owing to the afore-mentioned memory ef-
fect. In this paper, we focus on the influence of such
short-lengthscale liquidity and memorization on liquid
crystallinity in IGNEs. We construct a suitable Landau-
type free energy [see Eq. (3)], which involves two novel
elements: (i) a lengthscale-dependent nematic-nematic
term reflecting the short-lengthscale liquidity; and (ii) a
random field that takes the memory effect into account.
We show that these elements lead to three predictions:
(i) the correlation length of the thermal nematic fluctu-

ations in an IGNE having a weak random field is shorter
than it is in liquid nematics held at the same tempera-
ture; (ii) the thermal and glassy correlations of the liquid
crystallinity in IGNEs having sufficiently strong random
fields exhibit oscillatory spatial decay; and (iii) when the
local nematic order present at the instant of cross-linking
is spatially correlated over distances larger than the typi-
cal localization length of the network, the system strongly
memorizes that local nematic order. We expect these fea-
tures all to be detectable via light scattering experiments

To describe the structure and correlations of the sys-
tem post cross-linking, we employ the local nematic order
parameter Qdd′(r), which is traceless, symmetric, and of
rank-two, and is defined microscopically via

Qdd′(r) =

P∑
p=1

(
Np
dN

p
d′ −D

−1δdd′
)
δ(D)

(
r−Rp

)
, (1)

where P is the number of rod-like units, Np is the mi-
croscopic unit orientation vector of unit p and Rp is its
microscopic position vector in D dimensions, and r is an
arbitrary position vector. In addition, we characterize
the random local environmental anisotropy, which tends
to induce local nematic alignment Q in the post cross-
linking system, in terms of the random tensor field M:

M(r) = Y(r) +
T

Tp

∫
dDr′H(r− r′)Q0(r′). (2)

Here, T is the measurement temperature (i.e., the tem-
perature at which the system is maintained, in equi-
librium, long after the cross-linking process), and Tp
is the temperature of the equilibrium state into which
cross-links are instantaneously created, where p stands
for preparation. The random environmental anisotropy
described by M is caused by the thermally averaged
part of random local spatial arrangement of the local-
ized polymers at post-cross-linking equilibrium. It con-
sists of two parts: (i) a part that is independent of the
the pattern of local nematic alignment Q0 present at
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the instant of cross-linking, which we call the memory-
independent random field and denote by Y; and (ii) a
part that is due to the pattern of Q0, which we call
the memory-dependent random field . Q0 is partially im-
printed in the network structure, and this imprint then
partially elicits a response similar to Q0 in the post-cross-
linking state. The relationship between Q and Q0 is
characterized by a “smearing” kernel, which embodies
the idea that Q (i.e., the post-cross-linking equilibrium-
state memory of Q0) is partially erased, as a result of
the thermal position fluctuations of the network. Equiv-
alently, viewed from wave-vector space, the contribution
from Q0 becomes HkQ

0
k. Physically, we expect H(r) to

be positive and bell-shaped, operative primarily over a
region of order the typical localization length ξL (which
reflects how weakly localized the network constituents
are; see, e.g., Ref. [8]), and to decay monotonically with
increasing |r| over this lengthscale, ultimately tending
to zero for |r| � ξL. Correspondingly, in wave-vector
space Hk would decay monotonically to zero over a scale
ξ−1L . Hence, we see that H serves as a “soft filter,” de-
amplifying—more strongly the shorter the lengthscale—
the contributions made by the Fourier components of
Q0 to the random anisotropic environment on distance
scales shorter than ξL. This is a natural consequence
of the liquid-like character of the post-cross-linking sys-
tem on lengthscales shorter than ξL. As for the overall
amplitude of H, this we expect to increase with (i) the
fraction G of polymers that are localized; (ii) the sharp-
ness of localization, 1/ξL; (iii) the nematogen-nematogen
aligning interaction J ; and (iv) the length ` of the ne-
matogens; and we expect this amplitude to decrease with
the “measurement temperature” T (see below for more
on this concept), because thermal fluctuations tend to
moderate any aligning forces. A complementary mi-
croscopic calculation [9] bears out these expectations,
yielding Hk = H0 exp(−k2ξ2L/2), where the amplitude
H0 ∝ G2J2(`/ξL)4/T .

In terms of these ingredients, we take as a model for
the Landau-type free-energy cost F associated with the
induction of local nematic order in the post-cross-linking
system the form:

F =
1

2

∫
k

((
At+ Lk2 + Hk

){
QkQ−k

}
−2
{(

Yk + (T/Tp) Hk Q
0
k

)
Q−k

})
. (3)

Here,
∫
k

is shorthand for
∫
dDk/(2π)D, k2 is the squared

length of the vector k, and the Rk is the Fourier trans-
form

∫
dDr R(r) exp(ik·r). In addition, curly brackets—

as in {SS′}—indicate the trace of the product of the

tensors S and S′, i.e.,
∑D
d,d′=1 Sdd′S

′
d′d. Furthermore,

A characterizes the aligning tendencies of nematic free-
doms; and L is the generalized stiffness for nematic order,
for which (for the sake of simplicity) we have adopted the
Landau-de Gennes equivalent of the one-Frank-constant

approximation [10]. The symbol t denotes the reduced
measurement temperature [11]; the occurrence of two
temperatures, T and Tp, stems from the fact that elas-
tomers and related systems are characterized by not one
but two statistical ensembles. One, which we call the
preparation ensemble, provides a statistical description
of the random (non-equilibrating, unmeasured) freedoms
Q0 that characterize the local alignment immediately
prior to cross-linking. The other ensemble describes the
equilibrium state of the system long after cross-linking
was done, via the statistics of the equilibrating variables
Q; we call it the measurement ensemble.

The free energy (3) consists of two terms. The first
two elements of the first term constitute the familiar
Landau-de Gennes free energy at quadratic order; higher-
order terms have been neglected as we focus on the
properties of IGNEs at t > 0. These elements de-
scribe the free-energy cost of inducing nematic align-
ment from the unaligned state. The second term incor-
porates what we have described above, viz., the influ-
ences of (i) the configuration of the rod-like constituents
at the instant of cross-linking, via Q0, together with
(ii) the memory-independent random field Y caused by
the localized polymers post cross-linking. From the (pre-
viously given) value of H0 and Eq. (3), we see that
the contribution to F/T involving Q0 carries a factor
(J/Tp)(G`

2/ξ2L)2(J/T ). In it, the two temperature fac-
tors show that the network is better able to store a given
pattern Q0 the lower the preparation temperature Tp
and, similarly, better able to elicit Q0 from Q the lower
the measurement temperature T . Taking the two terms
together, F is minimized by the most probable nematic
configuration Q̃, which is given by

Q̃k =
(
Yk + (T/Tp) Hk Q

0
k

)
/
(
At+ Lk2 + Hk

)
. (4)

By completing the square with respect to the first and
second terms in Eq. (3), we arrive at the following form
for F (up to a non-thermally fluctuating term):

1

2

∫
k

(
At+ Lk2 + Hk

){(
Qk − Q̃k

)(
Q−k − Q̃−k

)}
. (5)

The third element in the first term of the free energy (3) is
a new and central element. It encodes the essential phys-
ical difference between our model and previous models of
IGNEs, viz., the elastomer’s possession of a network that
is localized randomly and fluctuating thermally, and is,
furthermore, liquid-like at sub-localization-length scales
and solid-like at larger scales. As can be seen from
Eq. (5), this element gives rise to a nonlocal free-energy
cost for creating a departure from the nematic pattern
Q̃k. This cost arises because the network mediates addi-
tional nematic-nematic interactions. We emphasize that:
(i) the mediated interactions addressed here are not of a
type transmitted through coupling between the nematic
order and elastic deformation, but of a novel type that
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is related to the short-lengthscale liquidity feature of the
network [12]; and (ii) the free-energy cost associated with
such mediated interactions arises from the competition
of the tendency for nematic alignment with localization
forces (associated with short-range liquidity) rather than
with elastic forces [13]. Thus, the nonlocal energy cost of

creating a nematic departure from Q̃ that is essentially
uniform over a lengthscale rather larger than ξL is rel-
atively large, as at this lengthscale the solidness of the
network becomes pronounced. Conversely, the nonlocal
energy cost is relatively mild if the departure varies only
over some lengthscale rather shorter than ξL, where the
system has a more liquid-like character.

Various averaged diagnostics of the system involving
the local nematic order Q(r) may be considered by means
of F . These averages come in two types. First, there are
disorder-averaged quantities (denoted by [· · · ]), by which
we mean quantities averaged over suitably distributed Y
and Q0. Second, there are thermally averaged quantities
(denoted by 〈· · · 〉), by which we mean quantities aver-
aged over the measurement ensemble. We focus on two
particular diagnostics of nematic elastomers. The first is
the thermal fluctuation correlator CT , defined [14] via

CT (r − r′) ≡
[〈{(

Q(r)− 〈Q(r)〉
)(
Q(r′)− 〈Q(r′)〉

)}〉]
.

(6a)
The second is the glassy correlator CG, defined via

CG(r − r′) ≡
[{〈

Q(r)
〉〈
Q(r′)

〉}]
, (6b)

which is a diagnostic of any randomly frozen (i.e., time-
persistent) nematic order present. In particular, the
value CG(r)|r=0 is the nematic analog of the Edwards-
Anderson order parameter for spin glasses [15], and mea-
sures the magnitude of the local frozen nematic order;
hence the name glassy correlator. Moreover, how CG(r)
varies with r determines the spatial extent of regions that
share a roughly common nematic alignment [16].

One could also consider the disorder-averaged quan-
tity [〈Q(r)〉]; it, however, vanishes, owing to the macro-
scopic isotropy of the post-cross-linking state. On the
other hand, the thermal average of the local order pa-
rameter for a specific realization of the quenched disorder
〈Q(r)〉 is maintained at a nonzero, time-persistent, ran-
dom value, which we shall compute shortly. This nonzero
value is the result of the partial trapping, by the network,
of the orientational randomness Q0 present at the instant
of cross-linking, together with the memory-independent
random field Y of the network, post cross-linking. The
free energy (3) is quadratic in Q, and therefore the com-
putation of 〈Q〉 and CT using the weight exp(−F/T ) is

elementary, yielding 〈Qk〉 = Q̃k and〈{(
Qk − 〈Qk〉

)(
Qk′ − 〈Qk′〉

)}〉
=

TµD δk+k′,0

At+ Lk2 + Hk
. (7)

Here, µD ≡ (D − 1)(D + 2)/2 counts the number of de-
grees of freedom of Q and takes the value 5 for D = 3.

Note that we have chosen units in which Boltzmann’s
constant has the value unity.

To perform the average over the quenched random vari-
ables Y and Q0 we must adopt a model for their statis-
tics that is consistent with the physical origin each has.
The choice we make is that Y and Q0 are independent,
Gaussian-distributed random fields, with zero means and
non-zero variances, the latter being given by[{

Q0
k Q

0
k′

}]
= TpµD

δk+k′,0

A0tp + L0k2
, (8a)[{

Yk Yk′
}]

= T Hk δk+k′,0 . (8b)

Here, A0 and L0 are, respectively, the preparation-
ensemble counterparts to A and L. The statistics of Q0

depends on the reduced temperature of the preparation
ensemble, tp [11]; it does not depend on H, because H en-
codes the physics of random but imperfect spatial local-
ization, and this only comes into being post cross-linking.
(The impact of Q0 does depend on H, as H controls the
relaxation of Q from Q0 to its equilibrium value, post
cross-linking.) By contrast, the statistics of Y does de-
pend on H; this is because H characterizes the typical
value of the memory-independent random field that re-
sults from the random (imperfect) spatial localization of
the polymers constituting the network. In view of their
distinct origins it is natural that Y and Q0 be statis-
tically uncorrelated. However, it is not a coincidence
(and can indeed be derived from a microscopic calcula-
tion [9]) that the H that characterizes the orientational
caging induced by the network (via Y) is the same H
that determines the fidelity with which the network pre-
serves the orientational order present immediately post
cross-linking (i.e., Q0). It is, in fact, natural, because
localization that is sharper and more widespread (i.e.,
involves a larger localized fraction) both creates more in-
tense network-induced orientational caging and enhances
the trapping-in of the local nematic order present im-
mediately post cross-linking. Our physical expectation,
borne out by a complementary microscopic analysis (see
Ref. [9]), is that such strengthening of the localization
would enhance memorization more strongly than it would
orientational caging. This expectation is consistent with
the phenomenological choice presented here, in which the
corresponding contributions to the random anisotropy
field, Eq. (2), scale as

√
H for the caging (i.e., Y) part

and H for the “memorization” (i.e., Q0) part.
Returning to the disorder-averaged diagnostics—the

mean [〈Q〉] and the correlators CT and CG—we complete
their computation using the statistics of the quenched
disorder, Eqs. (8), to arrive at (with [〈Qk〉] = 0)

CTk = TµD
1

At+ Lk2 + Hk
, (9a)

CGk = TµD

T
Tp

(A0tp + L0k2)−1|Hk|2 + Hk

(At+Lk2+Hk)
2 . (9b)
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FIG. 1: (a) Glassy correlator (rescaled) C̃G(r) ≡
(60π2L/TµD)CG(r), for tp � TH0/TpA0; t = 0.1L/Aξ2L,

at (i) H0/H
(c) = 0.5 (weak disorder; red, dashed) and

(ii) H0/H
(c) = 40 (strong disorder; blue, solid). (b) Ther-

mal correlator (rescaled) C̃T (r) ≡ (2π2L/TµD)CT (r), for the
same parameters. On going from weak to strong disorder,
both correlators cross over from simple exponential decay to
oscillatory decay at wavelength of order ξL.

Disorder strength Weak (H0 < H(c)) Strong (H0 > H(c))

ξ2T,o ∞ 1
2
ξ2L/ ln(H0/H

(c))

ξ2T,d ξ2N
1−(H0/H

(c))
1+(H0/At)

∼ ξ2L/
(
1 +

ξ2L
2ξ2

N

)
ξ2G,o ∞ ∼ ξ2L/ ln(H0/H

(c))

ξ2G,d
1
2
ξ2L + 2ξ2N

1−(H0/H
(c))

1+(H0/At)
∼ ξ2L

TABLE I: Values of the correlation lengthscales (ξT,d and
ξG,d), and the oscillation wavelengths (ξT,o and ξG,o), in the
weak– and strong–disorder regimes for the case of IGNEs
crosslinked at tp � TH0/TpA0.

Having computed the correlators CT and CG, we now
set about using them to study how the presence of a
network modifies the organizational behavior of nematic
freedoms. To do this, we first note that there are two
emergent lengthscales present in IGNEs: (i) the typical
localization length, ξL, quantifying the sharpness of local-
ization of polymers belonging to the network; and (ii) the
intrinsic nematic correlation length, ξN [≡

√
L/At], de-

scribing the range over which nematic freedoms would be
correlated if there were no network present. On the other
hand, we have the strength of the memory-independent
random field Y, which is characterized by

√
H0. In what

follows, we shall study the dependence of CT and CG on
the parameters ξN , ξL and H0, doing so for two specific
systems: one prepared at tp � TH0/TpA0, and one at
tp < TH0/TpA0.

First consider the behaviors of CT and CG for tp �
TH0/TpA0, so that any local nematic order present im-
mediately post cross-linking (and thus available for trap-
ping in) is spatially correlated only over distances far
shorter than the typical localization length ξL; see Ta-
ble I. This separation of lengthscales implies that the
local nematic order arising from Q0 would be heavily

“washed out” by thermal fluctuations of the network.
Thus, in this regime the dominant contribution to the
trapped-in local nematic order originates in the memory-
independent random field, Y.

Continuing with the case tp � TH0/TpA0, we observe
that CT and CG exhibit qualitatively distinct behaviors
in two regimes, depending on the strength of the random
field (see Fig. 1). For H0 < H(c) (where H(c) ≡ 2L/ξ2L—
the weak disorder regime), CT and CG decay simply with
increasing real-space separation. More specifically, by
examining their small wave-vector behaviors we ascer-
tain that the respective associated correlation lengths
ξT,d and ξG,d have the values given in Table I. We see
from the behavior of ξT,d the physically reasonable re-
sult that the random network, with its thermal fluctu-
ations, serves to shorten the nematic thermal fluctua-
tion correlation length from the value it would have in
the absence of the network, a phenomenon that conven-
tional (i.e., non-thermally fluctuating) random-field ap-
proaches would not capture. As for ξ2G,d, it comprises

two parts. One (∝ ξ2T,d) arises from the nematic ther-

mal correlations; the other (∝ ξ2L) comes from the local
aligning effect exerted by the cage. The fact that ξG,d in-
creases with ξL does not mean that a more weakly cross-
linked network (for which ξL would be larger) aligns the
nematogens more effectively. Whilst the lengthscale of
aligned regions ξG,d may increase, the magnitude of CG,
which governs the intensity of the alignment locally, de-
creases [17]. By contrast, for H0 > H(c) (i.e., the strong
disorder regime), the (weak disorder) simple decay of the
correlators can give way to oscillatory decay, as we now
discuss. Regardless of T , CT oscillates, whereas CG only
does for sufficiently small T . The oscillation wavelengths
ξT/G,o are determined via the radii of the shells in wave-
vector space on which the corresponding correlators are
maximal. Thus, we arrive at an explicit (and, notably,

T -independent) formula ξT,o = ξL/
√

2 ln(H0/H(c)) and
an implicit one for ξG,o, viz.,

1 + (ξN/ξG,o)
2 + 4(ξN/ξL)2 − (H0/At)e−ξ

2
L/2ξ

2
G,o = 0.

The value of ξT/G,d in this strong-disorder regime, given
in Table I, is estimated via the widths of the peaks of
CT/G. Upon decreasing ξL at fixed ξN , the value of ξT,d
tends to ξL from above, indicating that the network is
limiting the range over which the thermal nematic fluc-
tuations are correlated; on the other hand, ξG,d remains
at the scale of ξL, indicating that the range of coher-
ent nematic alignment is circumscribed by the network’s
typical localization length.

Oscillatory behavior can be regarded as the resolution
of the interplay of two energetic costs of fluctuations. The
cost of creating local nematic order via rotations of the
nematogens is smaller for long-wavelength fluctuations.
By contrast, the cost of creating nematic order via local
segregation of nematogens according to their preferred
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orientation is smaller for short-wavelength fluctuations
(which is a reflection of the short-lengthscale liquidity of
the network). When the former mode dominates for all
wavelengths, long-wavelength fluctuations are the most
probable and, hence, correlations decay without oscilla-
tion. When the disorder is strong enough, however, the
latter mode drives the most probable fluctuations to a fi-
nite wave-vector and, hence, correlations oscillate as they
decay. (Such behavior is analogous to the micro-phase
separation in cross-linked polymer blends. [18, 19])

Having considered the behaviors of CT and CG for
systems prepared at high temperatures, we now con-
sider the corresponding behavior for systems prepared
at tp < TH0/TpA0, so that the local nematic order
present immediately post cross-linking is spatially cor-
related over distances larger than ξL [20]. As one can
see from Eq. (9a), the behavior of CT is unchanged, un-
dergoing simple decay in real space at weak disorder but
oscillatory decay at strong disorder. Conversely, CG ex-
hibits behavior qualitatively different from that of a sys-
tem prepared at tp � TH0/TpA0, because it now receives
its dominant contribution from the memorization of Q0.
Specializing to t ≈ tp and for wavelengths larger than ξL,
we see from Eq. (9b) that CG is approximately given by

CGk ≈ µD
(
T

Tp

)2
Tp

A0tp + L0k2
, (10)

i.e., it is proportional to the correlator of the thermal ne-
matic fluctuations immediately post cross-linking. This
indicates that the pattern of these thermal fluctuations
has been faithfully memorized by the network.
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