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We report measurements of resistance oscillations in micron-scale antidots in both the integer
and fractional quantum Hall regimes. In the integer regime, we conclude that oscillations are of
the Coulomb type from the scaling of magnetic field period with the number of edges bound to the
antidot. Based on both gate-voltage and field periods, we find at filling factor ν = 2 a tunneling
charge of e and two charged edges. Generalizing this picture to the fractional regime, we find (again,
based on field and gate-voltage periods) at ν = 2/3 a tunneling charge of (2/3)e and a single charged
edge.

The fractional quantum Hall effect occurs when a high-
mobility two-dimensional electronic gas (2DEG) is sub-
ject to a perpendicular applied magnetic field. At low
temperature, electrons in the bulk of the 2DEG con-
dense into incompressible states [1], with extended states
at the sample edge carrying charge, spin, and energy.
It was theoretically shown that for Laughlin states such
as filling factor ν = 1/3, a single chiral edge state car-
ries excitations with fractional charge [2]. A more com-
plicated structure is predicted for hole-conjugate frac-
tions such as ν = 2/3, where counter-propagating edge
states hybridize in the presence of edge disorder, lead-
ing to a forward-propagating charge mode and a reverse-
propagating neutral mode [3–6]. Contrasts between the
two counter-propagating modes at ν = 2/3 and the sim-
pler situation at ν = 2, where two forward-propagating
modes remain separated and independent, have been dis-
cussed theoretically [4, 6].

Ashoori et al. investigated the ν = 2/3 edge exper-
imentally using edge magnetoplasmon propagation and
found only a single charged edge mode [7]. Recent mea-
surements of current noise through a quantum point con-
tact (QPC) at bulk filling ν = 2/3 found finite shot noise
at half transmission of the QPC, which was interpreted as
indicating a single composite 2/3 edge [8]. In addition, a
tunneling charge of e∗ = (2/3)e was observed at low tem-
perature, decreasing to e/3 above 0.1 K [8]. Subsequent
theory addressed these surprising results by considering
the agglomeration of e/3 quasiparticles at low tempera-
tures [10]. Bid et al. also observed signatures of a neutral
mode near ν = 5/2 by measuring shot noise [9].

Antidots have been used to study tunneling and con-
finement effects in both the integer and fractional quan-
tum Hall regimes [11–22]. Early experiments by Hwang
et al. [11] found resistance oscillations as a function of
magnetic field and channel gate voltage for a density
slightly below ν = 1 in the constrictions between the
antidot and sample edges. The observed field period,
corresponding to one flux quantum through the antidot,
was interpreted in terms of a single-particle Aharonov-
Bohm phase [11]. Subsequent experiments near ν = 2
in the constrictions found a field period corresponding to

h/2e (φ0/2) through the antidot, motivating an alterna-
tive interpretation in terms of Coulomb charging of two
isolated edge states [13]. Coulomb charging of an anti-
dot was observed directly by Kataoka et al. at both ν = 1
and ν = 2 using a QPC charge sensor [17]. Goldman et
al. found the field period of oscillations to depend on the
filling factor through the constriction, interpreting this
dependence as a signature of Coulomb charging of mul-
tiple isolated edges surrounding the antidot [22]. Recent
theory by Ihnatsenka et al. captures many of the effects
observed experimentally in antidots in the integer quan-
tum Hall regime [30]. Much less experimental work on
antidots has been reported in the fractional regime de-
spite numerous theoretical proposals related to this sys-
tem [25–29]. A key experiment was the measurement
of fractional tunneling charge, e∗ = e/3, for an antidot
with ν = 1/3 in the constrictions, based on the back-gate
voltage and magnetic field periods of observed resistance
oscillations [14].
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FIG. 1: (a) False color SEM of the larger antidot device with
2 µm diameter. Diagonal voltage, VD, across the device, as well
as bulk Hall voltage, VH , are measured as shown. Depleted gates
are indicated in yellow, grounded gates are indicated in blue. The
QPC constriction sizes range from 500 nm to 1.5 µm. (b) Cross
section of the device taken along the dashed line in (a). The antidot
gate is separated from the screening gate by a 30 nm HfO2 layer.
(c) Schematic layout of the edge states through the device when
νc = ν−c . The bulk filling factor, νb, and the constriction filling
factor, νc, are indicated.
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In this Letter, we report measurements of resistance os-
cillations in gate-defined antidots of two sizes, comparing
integer and fractional filling factors in the constrictions
between the antidot and adjacent gates that extend to the
sample edge. Oscillations as a function of perpendicular
magnetic field and antidot gate voltage were measured
in 2D sweeps, and dominant frequencies extracted from
2D Fourier spectra. For integer filling in the constric-
tions, magnetic field oscillation frequencies were found to
be proportional to the filling factor in the constrictions,
consistent with a Coulomb charging model. At ν = 2/3,
the magnetic field oscillation frequency was found to be
consistent with a single charged edge within a general-
ized Coulomb charging picture, with the charge-carrying
edge state located slightly closer to the antidot than the
single edge found at ν = 1. Gate-voltage oscillations pro-
vide a direct measurement of the tunneling quasiparticle
charge. Normalizing to a tunneling charge of e at ν = 1,
which determines the gate voltage lever arm, we find a
tunneling charge consistent with e for all measured inte-
ger filling factors, and a tunneling charge consistent with
e∗ = (2/3)e at ν = 2/3.

Antidot devices with 1 µm and 2 µm diameter an-
tidots were fabricated on a symmetrically Si-doped
GaAs/AlGaAs 30 nm quantum well structure located
230 nm below the wafer surface, with density n = 1.6×
1015 m−2 and mobility µ = 1,200 m2/V·s measured in
the dark. A Ti/Au (8 nm/42 nm) screening gate was
first patterned using electron-beam lithography on a wet-
etched mesa [purple gate in Fig. 1(a)]. The sample was
then coated with 30 nm of HfO2 using atomic layer de-
position. A circular antidot [Ti/Au (8 nm/42 nm)] was
next patterned on top of the HfO2, positioned to extend
beyond the edge of the screening gate, with connection
to a remote bonding pad via a “pan handle” depletion
gate that runs on top of the screening layer, so that only
the 2DEG under the antidot is depleted when the gate
is activated [Fig. 1(a, b)]. Effects of the screening gate
were checked by measuring the resistance between two
ohmic contacts on either side of the antidot and screen-
ing gates. We detected no change in the resistance when
we varied the antidot gate voltage while the screening
gate was grounded.

Transport measurements were made using a current
bias I of 0.3 nA at 101 Hz, with magnetic field, B, ap-
plied perpendicular to the plane of the 2DEG, in a dilu-
tion refrigerator with base temperature ∼10 mK. QPC
gate voltages (Vq1, Vq2), were trimmed around −1.0 V to
symmetrize the device, i.e., to give the same filling fac-
tors in the two constrictions. The antidot gate voltage,
Vg, was then swept around −0.9 V, yielding periodic re-
sistance oscillations. The screening gate and all unused
QPC gates were grounded. The diagonal voltage, VD,
was measured between incoming edge states on opposite
sides of the device [Fig. 1(c)], and the diagonal resis-
tance, RD ≡ dVD/dI, was used to determine the filling
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FIG. 2: Diagonal resistance, RD (red), and bulk Hall resistance,
RH (blue), as a function of perpendicular magnetic field, B, in the
1 µm diameter antidot with the 500 nm QPCs activated. Insets
show regions of oscillations at νc = 2−, νc = 1−, and νc = 2/3−.

factor in the QPCs, νc = h/(RDe
2). The bulk Hall re-

sistance, RH ≡ dVH/dI, was simultaneously measured
using contacts away from the antidot [Fig. 1(a)]. Figure
1(c) schematically shows the bulk filling factor, νb, along
with the filling factor in the constrictions, νc, in the con-
dition where RD is slightly larger than the resistance of
well-quantized plateaus. This condition, measured on the
high-field side of the νc plateau in RD, is denoted ν−c .

Figure 2 shows RH(B) and RD(B) at fixed gate volt-
ages in the 1 µm diameter antidot with the 500 nm QPCs
activated. Insets show detailed views of periodic oscilla-
tions in RD(B), with periods ∆B = 2.1 mT for νc = 1−,
∆B = 1.0 mT for νc = 2−, and ∆B = 2.9 mT for
νc = 2/3−. Aperiodic fluctuations in RD(B) were also
observed on the low-field sides of the plateaus. The pe-
riod of 2.1 mT at νc = 1− corresponds to φ0 = h/e
through an area of 2.0 µm2, larger than the lithographic
area of the antidot, which is 0.8 µm2. We attribute the
larger area to the finite depletion length of the antidot
top gate, as discussed quantitatively below. The period
of 1.0 mT at νc = 2− corresponds to φ0/2 going through a
device of about the same area. Continuing this trend for
integer states, oscillations observed at νc = 3− had a field
period corresponding to φ0/3; oscillations at νc = 4− had
a field period corresponding to φ0/4 (not shown). The
observed scaling of field periods with antidot-bound edge
states, i.e.
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FIG. 3: Diagonal resistance with background subtracted, δRD, as
a function of B and Vg in 2 µm diameter antidot at (a) νc = 1−,
(b) νc = 2−, and (c) νc = 2/3−, with corresponding 2D Fourier
power spectra. Dominant peaks in the power spectra are marked
by dashed lines, located at (1.4 mT−1, 3.6 mV−1) for νc = 1−,
(2.7 mT−1, 3.6 mV−1) for νc = 2−, and (1.1 mT−1, 5.6 mV−1)
for νc = 2/3−.

∆B =
h

Ne
A, (1)

where N is the number of antidot-bound edge states and
A is the effective area of the antidot, is consistent with
previous experiments in the integer quantum Hall regime
in antidots [13, 22].

Figure 3 shows RD with a smooth background sub-
tracted, denoted δRD, as a function of both B and Vg
in the 2 µm diameter antidot with 500 nm QPCs acti-
vated at νc = 1−, νc = 2−, and νc = 2/3− along with
corresponding two-dimensional (2D) Fourier power spec-
tra. The 2D plots of δRD reveal positively sloped stripes
in all cases. The dominant peaks in the Fourier spec-
tra show the expected scaling of the field period between
νc = 1− and νc = 2−, with peaks at 1.4 mT−1 at νc = 1−

and 2.7 mT−1 at νc = 2− differing roughly by the same

D [µm] νc d [nm] ∆B [mT] N

2
1 320 0.74 1
2 310 0.38 2

2/3 190 0.92 1

1
1 320 2.1 1
2 310 1.0 2

2/3 190 2.9 1

TABLE I: Summary of magnetic field oscillations data, for
antidots with lithographic diameter D and filling factor νc in
the constrictions connecting the antidot to the sample edges.
Oscillation periods, ∆B, used to determine depletion length,
d, taken to be the same for the two antidots at the same filling
factor, and the number of edge channels, N .

factor of two as discussed above. At νc = 2/3−, the dom-
inant Fourier peak is at 1.1 mT−1, which is close to, but
somewhat smaller than the magnetic field frequency at
νc = 1−. This scaling of magnetic field periods is similar
to what was observed in the 1 µm device above. The
position of the dominant spectral peak as a function of
gate-voltage frequency, 1/∆Vg, is the same for νc = 1−

and νc = 2−, in both cases 3.6 mV−1, but increases to
5.6 mV−1 at νc = 2/3−.

Table I summarizes the observed oscillations as a func-
tion of magnetic field. The number of charge-carrying
edges, N , at each filling factor is deduced from the mag-
netic field period within a Coulomb charging picture,
where each edge contributes one oscillation in resistance
per flux quantum. In the integer regime, this interpre-
tation is consistent with previous experiments and data
in both antidots and quantum dots [13, 22, 32, 33], and
reconciles the unphysically large effective area that would
be inferred from the field period at νc = 2− from a single-
edge picture. We find, therefore, N = 2 separate charge-
carrying edges bound to the antidot at νc = 2− . At
νc = 2/3−, the measured period is too large to corre-
spond to two charged edges within an analogous Coulomb
picture, as the large field period would imply d < 0. We
thus find N = 1 charged edge at νc = 2/3−.

Equation 1 was used to find a best-fit effective area
enclosed by the charged edge state at each filling factor
for each device. The depletion length was then found by
taking an average of the best fit effective areas and con-
straining both devices to have the same depletion length,
d, for two antidot sizes measured at the same antidot gate
voltage. To calculate the depletion length from the data
at νc = 2−, we take one flux quantum to correspond to
twice the measured magnetic field period. Note that the
depletion length deduced in this way is ∼ 100 nm smaller
at νc = 2/3− than at νc = 1− and νc = 2−. Depletion
lengths calculated in the same manner at νc = 1/3− are
∼ 40 nm smaller than the depletion lengths found at in-
teger filling factors [31].

Table II summarizes observed oscillations as a function
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D [µm] νc ∆Vg[mV]
∆Vg

∆V
νc=1
g

2
1 0.28 ≡ 1
2 0.28 1.0

2/3 0.18 0.64

1
1 0.62 ≡ 1
2 0.62 1.0

2/3 0.42 0.67

TABLE II: Summary of gate-voltage oscillations data, for an-
tidots with lithographic diameter D and filling factor νc in the
constrictions. Oscillation periods, ∆Vg, and periods relative
to the period at νc = 1− determine the tunneling charge, e∗,
as discussed in the text.

of antidot gate voltage. Gate-voltage periods at νc = 1−

and νc = 2− are the same within measurement uncer-
tainty. The gate-voltage period at νc = 2/3−, is ∼ 2/3
of this value. No features are visible in the νc = 2/3−

Fourier spectrum at 1/3 times the gate-voltage period at
νc = 1− in either device. We also do not find any change
in the gate-voltage period above 100 mK, in contrast to
the behavior observed in Ref. [8].

Based on magnetic field and gate-voltage periods, we
infer a Coulomb charging mechanism for the observed
resistance oscillations. In the case of single-particle
Aharonov-Bohm oscillations, one would expect a con-
stant field period and a gate-voltage period that scales
inversely with increasing applied magnetic field [30]. We
do not observe this behavior in our devices. Instead, we
have found that the field period scales with the num-
ber of edges in the system and the gate-voltage period
is constant for integer oscillations but changes for frac-
tional oscillations. From these observations, we conclude
that Coulomb effects are the dominant mechanisms for
oscillations in our system [30, 34].

Coulomb oscillations in antidots in the integer regime
was considered theoretically in Ref. [30], which found
that the field period scales with the number of fully trans-
mitted edges in the constrictions. We instead find oscil-
lations on the high field side of the νc plateau in RD,
where the outermost edge is not fully transmitted. Simi-
lar results were reported in Ref. [13], which found a field
period corresponding to φ0/2 on both sides of the ν = 2
plateau. We conclude that it is number of antidot-bound
edge states that determines the magnetic field period.

The picture of Coulomb oscillations gives an antidot
gate-voltage period proportional to the tunneling charge,

∆Vg ∝ e∗, (2)

independent of the number of edges [30, 34], assuming a
capacitive coupling (or lever arm) that is roughly inde-
pendent of filling factor. Numerical modeling indicates
that the capacitance of the antidot gate to a nearby
2DEG does not change significantly within the range of

depletion lengths in Table I. The insensitivity of capaci-
tance to filling factor is also supported by the observation
of equal gate-voltage periods for νc = 1− and νc = 2−.
The observed period at νc = 2/3− thus strongly suggests
e∗ = 2e/3. This result is somewhat surprising in light
of previous measurements of tunneling into a disorder-
induced charge puddle at ν = 2/3, which found e∗ = e/3
[36]. We speculate that the smaller charging energies
in the current devices, due to screening from the anti-
dot gate, allow a quasiparticle pairing energy associated
with edge reconstruction at ν = 2/3 to dominate over the
Coulomb energy associated with tunneling 2e/3 rather
than e/3. Further experiments, including on devices that
allow direct charge sensing, and over a broad range of de-
vice areas, will help clarify this result.
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