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Vanadium dioxide undergoes a first order metal–insulator transition at 340 K. In this work, we
develop and carry out state of the art linear scaling DFT calculations refined with non-local dynam-
ical mean-field theory. We identify a complex mechanism, a Peierls-assisted orbital selection Mott
instability, which is responsible for the insulating M1 phase, and furthermore survives a moderate
degree of disorder.

Vanadium dioxide (VO2) undergoes a first order
metal–insulator transition (MIT) at 340 K [1]. At high
temperature, the crystal structure is metallic with the ru-
tile structure (R), while it transforms to the monoclinic
(M1) phase and becomes insulating below the transition
temperature. The nature of the metal-insulator tran-
sition in VO2 has been long discussed, with particular
emphasis placed on the role of electron correlations in
forming the charge gap. Photoemission experiments give
strong evidence for strong electron-electron and electron-
phonon coupling in VO2 [2], suggesting that this com-
pound is an archetypal Mott insulator. However, density
functional theory (DFT) predicts the M1 phase to be
metallic [3, 4]. An alternative point of view is that the
low-temperature phase of VO2 may constitute a band
(Peierls) insulator, where the crystal distortion with the
V-V dimerization splits the a1g bonding band, as sug-
gested early by Goodenough [5]. Lastly one should con-
sider a charge transfer insulator exhibiting a strong mass
renormalisation [6]. The purpose of this letter is to dis-
entangle these competing pictures. The Peierls picture
was supported by DFT+GW calculations, where the au-
thors found that off-diagonal matrix elements in the self-
energy opened a gap [4], although its value was almost
zero and thus well below the experimental value of 0.6 eV
[7]. Very recently, a model Hamiltonian approach using
cluster dynamical mean-field theory (DMFT) applied to
a three band Hamiltonian for the t2g orbitals has been
shown to successfully capture the insulating nature of
the M1 phase [8, 9], and the authors found a charge gap
of 0.6 eV, in very good agreement with experiment [7].
Hence, VO2 is, in the latter view, not a conventional
Mott insulator. Instead, the formation of dynamical V-V
singlet pairs due to strong Coulomb correlations is nec-
essary to trigger the opening of a Peierls gap. We note,
however, that in Ref. [8] the vanadium 3d subshell is
occupied by a single electron (0.8 electrons for the a1g
with only 0.1 electrons remaining in each of the eπg or-
bitals). A general problem with model Hamiltonian ap-
proaches, recently pointed out in Ref. [10], is that the 3d

orbital density is very much affected by the orbital sub-
set projection used in the calculations. In particular, it
has been shown recently using XAS measurements [11]
that the states of VO2 are not well characterized by a
single dominant ionic configuration, rather exhibiting a
distributed orbital character, suggesting room for correc-
tion of Goodenough’s ionic picture of VO2.

The key issues that we address in this work are: (1) Is
the 3d1 ionic picture of Goodenough valid and how many
electrons are involved in the orbital selection process; (2)
Can Mott correlations alone drive VO2 to an insulator,
and what is the minimal local repulsion Ud necessary
to localize the charge, i.e., the Zaanen-Sawatzky-Allen
(ZSA) boundary [12, 13]; (3) How is the ZSA boundary
affected by other localization processes, such as the An-
derson charge localization induced by disorder, and can
we find an insulator for a combination of realistic disor-
der and Coulomb repulsion; (4) Are non-local corrections
to the self energy (the Peierls mechanism) an essential in-
gredient to trigger the gap opening for reasonable local
repulsion Ud, and is the latter insulating phase stable
against external perturbations such as disorder. To ad-
dress these points, we move beyond the model Hamilto-
nian approach and investigate the effect of correlations
in a disordered prototype for the metal–insulator tran-
sition in VO2 from the ab-initio perspective. We study
the M1 phase of VO2 using first-principles calculations
as a function of static disorder with a state of the art
linear scaling DFT method [14]. The capability of linear
scaling DFT to describe large super-cells, containing sev-
eral hundreds of atoms, is necessary to comprehensively
tackle the issue of disorder. We extend our DFT calcula-
tions with the DMFT approximation [15, 16] in order to
refine the description of the strong correlations induced
by the 3d subshell of the vanadium sites (for more details
see the supplementary material). Throughout this work
we used typical values for the screened Coulomb inter-
action (U = 4 eV) and Hunds coupling (J = 0.68 eV)
[17, 18], and our calculations were carried out for 324
atom super-cells (108 V atoms) and 768 atom super-cells
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FIG. 1. (Color online) Dependence of the spectral function
ρ(ω) with respect to the Coulomb repulsion Ud.

(256 V atoms) at fixed temperature T = 189 K. All or-
bitals are defined in the local coordinate system [19] as-
sociated with the vanadium atoms.

We first discuss single-site DMFT calculations for
paramagnetic VO2. The dependence of the spectral func-
tion on the on-site repulsion Ud is shown in Fig. 1. We
find that the M1 phase of VO2 is metallic for Ud = 4 eV
and that there is a large spectral weight present at the
Fermi level. Hence, VO2 is described by DFT+DMFT
as a charge transfer correlated paramagnetic metal, with
a moderate mass renormalization m∗/m = 1.35, of the
same order as the mass renormalization in the rutile
phase obtained by other groups (m∗/m = 1.8 from
Ref. [3] and m∗/m = 1.51 from Ref. [8]). The large spec-
tral weight at the Fermi level in Fig. 1 is of predominantly
dxy character, the contribution from the eg orbitals being
negligible: the spin-independent orbital densities at the
Fermi level ρσ(εF ) are 0.02,0.02,0.19,0.25,0.28 for, respec-
tively, dx2−y2 ,d3z2−r2 ,dyz,dxz,dxy symmetry, which indi-
cates a strong selection of the t2g orbitals at the Fermi
level in agreement with the orbital selection scenario ar-
gued long ago by Goodenough [5]. Notably, we find that
the dynamical correlations, described by the imaginary
part of the self-energy, also suggest that the dxy orbital
is the most correlated orbital, whereas the eg states are
weakly correlated (for more details see Fig. 2 and Fig. 3
of the supplementary material). We emphasize that here
the oxygen 2p subspaces act merely as charge reservoirs,
since the full Kohn-Sham Green’s function is computed
and then projected onto the correlated 3d subspaces. In-
deed, we find that the low energy physics is obtained by
the 3d orbitals near the Fermi level, in agreement with
previous observation that the spectral features in VO2

clusters are reproduced by effective Hamiltonian with 3d
orbitals only [20]. However, our results deviate from the
description of Goodenough: we obtain a vanadium 3d
sub-shell filling of n = 3.15 electrons from DFT, much
larger than the 3d1 configuration of the ionic picture.
We emphasize that we used a set of local Wannier or-
bitals, variationally optimized during the energy mini-
mization carried out in the DFT calculations [21], which
renders the calculation of the electronic density very re-
liable. Larger 3d orbital occupations in VO2 than the
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FIG. 2. (Color online) a) Spectral function ρ of paramagnetic
VO2 in the presence of Gaussian disorder δ. b) Averaged
quasi-particle weight Zd with respect to the repulsion Ud for
zero (δ = 0 Å) to large disorder (δ = 0.5 Å). Calculations
including a single O vacancy in the δ = 0 Å case are also
shown for comparison (open squares). c) Distribution of the
local quasi-particle weight Zd,i for δ = 0.1 Å. d) Isosurface of
the real space representation of the Fermi density for disorder
δ = 0.3 Å. The large (small) sphere denotes V (O) atoms
along the rutile axis.

single electron have been reported in earlier DFT calcu-
lations (LSDA+U finds n = 2.48 e [11]). We note, fur-
thermore, that similar occupancies are obtained for the
R phase, both by experimental measurement (n = 1.78 e
from XAS [11]) and DFT calculations (LSDA+U finds
n = 2.31 e [11] and LMTO-ASA gives n = 3.35 e
[22]). For larger Ud, we find that the spectral weight
at the Fermi level shrinks, and we obtain an insulator for
Ud = 25 eV, placing VO2 well below the ZSA boundary
U cd , estimated between 21 eV and 25 eV. We conclude
that a large 3d-3d Coulomb interaction alone is not suf-
ficient to generate a large band gap for VO2, as also sug-
gested by early LDA calculations [19, 23] which failed to
reproduce the insulating state. Finally, we also explored
the dependence on the Hund’s coupling J and found no
significant change in the mass renormalization by vary-
ing J between 0.3 eV and 1.2 eV, for fixed Ud = 4 eV,
although increasing J enhances the mass renormalization
for Ud = 8 eV and Ud = 16 eV.

If Coulomb correlations alone cannot lead to insulat-
ing behavior, perhaps the inevitable disorder due to im-
perfections of the crystal, or self-trapping due to strong
electron-phonon coupling could be relevant. Hence we
applied a random three-dimensional Gaussian displace-
ment to both the V and O atomic sites. The Gaussian
width δ characterizes the amplitude of the disorder. The
spectral function for disordered VO2 is shown in Fig. 2.a.
Although the spectral weight at the Fermi level is sup-
pressed with increasing disorder (reflecting charge local-
isation) the system remains metallic up to the largest
physical amplitudes of disorder. The effect of the local-
ization induced by disorder is also observed in the aver-
aged quasi-particle weight Zd (Fig. 2.b) and in the spa-
tial distribution of the local quasi-particle weight Zd,i
(Fig. 2.c), which clearly shows that the disorder gener-
ates regions in the crystal with strong localization, which
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FIG. 3. (Color online) a) Spectral function ρ obtained using
cellular cluster DMFT (c-DMFT) calculations without (δ =
0 Å) disorder for moderate (324 atom) and large (768 atom)
super-cells. Calculations for disordered VO2 (δ = 0.1 Å) and
for a single O vacancy are also shown for comparison. Inset:
Enlargement of the low energy scale, the gap of ∼ 0.6 eV is
shown. The vacancy introduces a mid-gap state, highlighted
by the arrow. b) Isosurface of the real space representation of
the charge density at the Fermi level for calculations for an O
vacancy (star). The large (small) sphere denotes V (O) atoms
along the rutile axis (horizontal direction). c) Imaginary part
of the self-energy and (inset) imaginary part of the Green’s
function for δ = 0 Å.

coexist with metallic parts of the crystal where the local-
ization has only a weak effect. These droplets of strongly
correlated Fermi liquid generate a larger mass renormal-
ization m∗/m on average, as observed in the decrease of
the averaged quasi-particle weight (Zd = m/m∗) as the
disorder increases (Fig. 2.b). The localization effect can
be understood in a simple picture: when the O atoms
move closer to the V atomic site, the static charge repul-
sion induces a larger charge transfer energy ∆ = εd − εp,
which enhances the strength of the correlation locally
(the repulsion U of the one band Hubbard model trans-
lates into the charge transfer energy in d-p theories [12]).
This effect is illustrated in Fig. 2.d, where we show an
isosurface of the real-space representation of the Fermi
density ρ(εF , r) for one of the V chains along the rutile
axis for δ = 0.3 Å, where large (small) spheres denote V
(O) atomic sites. The V atom highlighted by a star has
two very near oxygen neighbors, which is expected to in-
duce a larger charge transfer energy. The latter results in
a transfer of charge from the vanadium site to one of its
oxygen neighbors (indicated by an arrow). The subtle in-
terplay between the localization induced by the disorder
(Anderson-like) and the localization induced by strong
correlations (Mott-like) is captured by the DFT+DMFT
methodology.

We now move to the non-local cluster cellular DMFT
calculations (c-DMFT). In c-DMFT, the cluster impurity
of the AIM is mapped onto the 3d electron subspaces of
a pair of V atoms forming a dimer aligned with the rutile
axis. The non-locality of the self-energy between dimer-
ized vanadium 3d subspaces is thereby self-consistently

included in the calculations. The non-local correlation
present in cluster DMFT drives VO2 to an insulator
(Fig. 3.a), in agreement with earlier DMFT calculations
using model Hamiltonians [8] and we obtain a gap of
∼ 0.6 eV in agreement with both the latter and the ex-
perimental value [7]. We did not observe any finite size
effect, and the Peierls gaps obtained extracted from the
324 and 768 atom super-cells are identical. We find that
large disorder quenches the Peierls state for δ > 0.1 Å.
Very interestingly, the insulating Peierls state survives
for moderate disorder δ = 0.1 Å, although the gap is
reduced down to ∼ 0.3 eV. We also carried out cluster
DMFT calculations for the case of a single O vacancy:
the O vacancy creates a mid-gap state (inset of Fig. 3.a),
spatially localized in the center of the three V atoms sur-
rounding the vacancy, as illustrated by the real space
representation of the Fermi level density (Fig. 3.b) but
does not strongly affect the band edges. In conclusion,
our results suggest that the Peierls instability in VO2 is
very robust, surviving external perturbations such as re-
duction of the long-range crystallographic order or local
impurities. The imaginary part of the self-energy of the
dynamical Peierls singlet is shown in Fig. 3.c. We observe
that the gap is mainly induced by dynamical correlations
in the dxy orbital, which exhibit a pole at the Fermi level.
In our view, the dynamical V-V dimers generate a Mott
instability (the mechanism may be thus termed Peierls-
Mott). In particular, the spectral weight (inset) shows
that the cluster DMFT almost entirely depletes the dyz
orbital, leaving two electrons equally shared between the
dxz and dxy orbitals. The lobe of the latter orbitals point
towards the rutile axis, whereas the dyz orbital is oriented
perpendicular to this direction and thus the latter does
not contribute strongly to the orbital bonding within a
V-V dimer. Interestingly, therefore in our picture we
find that two electrons per V atom lie in bonding or-
bitals, leading to a strong Mott dynamical divergence in
the self-energy (Peierls-Mott). This contrasts with the
picture of Ref. [8], where a single electron on each V is of
bonding character and the repulsion Ud drives the bond-
ing orbitals to a singlet configuration, following the early
proposal of Sommers and Doniach [24]. In the latter pic-
ture, the repulsion energy may be dramatically reduced
by the formation of the singlet state, manifested in the
fact that the low-frequency behavior of the on-site com-
ponent of the self-energy, that associated with the a1g
orbital, is linear in frequency, as opposed to a Mott insu-
lator in which Σ′′ diverges. In our picture, the non-local
self-energy affects the hybridization between intra-dimer
orbitals, and act to deplete the dyz orbital, leaving 2 e
in two orbitals per V site, in turn generating a Mott
instability which creates a pole in the local self-energy
(Peierls-Mott). We note that the Peierls picture in our
view involves more than one electron, due to the non-
trivial hybridization between the vanadium and oxygen
orbitals, as recently obtained in XAS [11] and photoe-
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FIG. 4. (Color online) a) Theoretical optical conductivity
along the rutile axis (solid lines) and along the perpendicu-
lar direction (dashed lines) calculated with cellular DMFT.
Experimental data for polycrystalline films [26] (squares) and
thin films (diamonds) [27] are shown for comparison. b) Op-
tical conductivity along the rutile axis obtained by cellular
DMFT for disordered VO2 for various disorder amplitudes δ.

mission spectroscopy measurements [25], which hint at
an occupation of n ≈ 2 for the 3d sub-shell in the M1

phase. Although we find that the low energy physics is
captured by the correlated 3d orbital subspaces alone, in
agreement with Ref. [20], we note that the oxygen 2p
contribute indirectly to the correlations present in the 3d
shell by fixing the 3d occupation, which is captured in
our fully ab inito treatment. Finally, the optical con-
ductivity calculated using cluster DMFT (Fig. 4.a) is in
qualitative agreement with experimental data obtained
for polycrystalline films [26] and thin films [27]. We note
that the optical gap is not dramatically affected by a
moderate degree of disorder δ = 0.1 Å (Fig. 4.b). For
large disorder, however, VO2 is a bad metal and we note,
in particular, that no Drude peak is obtained in the op-
tical conductivity, and that the disorder induces strong
oscillations in the optical response for the infrared fre-
quency range ω < 1 eV. In conclusion, we have carried
out linear scaling first principle calculations, in combina-
tion with cluster DMFT, on VO2, both with and without
disorder. We find that the ZSA boundary of the para-
magnetic insulator is obtained only for unrealistic values
of the Coulomb repulsion (Ud ≈ 25 eV). We propose
a new mechanism for the insulating M1 phase of VO2

based on an orbital selective Mott transition, assisted
by the Peierls distortion: the Peierls instability involves
an orbital selection, and bonds the dxy and dxz orbitals
along the rutile axis, filling each orbital with one electron,
and in turn generates a Mott instability. This scenario
may be described as Peierls assisted orbital selective Mott
transition and reconciles the simpler one electron Peierls
picture with recent soft x-ray absorption spectroscopy
(XAS) [11], which points towards a breaking of the one
electron per 3d orbital picture suggested early by Good-
enough [5]. Finally, we demonstrated that the Peierls
phase survives moderate Gaussian disorder (δ = 0.1 Å),
and hence our picture accounts for the observation of
the MIT in the experimentally realistic, disordered sys-
tem [28]. Finally, we found that oxygen vacancies induce

a localized mid-gap state, leaving the band edges unaf-
fected, shedding some light on thin-film measurements
where substrate strain can induce stoichiometric modifi-
cation [29]. Our results, combining lattice disorder and a
powerful method for describing non-local, dynamical cor-
relation, open up new frontiers for first principles materi-
als design under under realistic experimental conditions.
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