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We calculate the nonlinear optical response of graphene in strong magnetic and optical fields,
using quantum-mechanical density-matrix formalism. We show that graphene in a magnetic field
possesses a giant mid/far-infrared optical nonlinearity, perhaps the highest among known materials.
The high nonlinearity originates from unique electronic properties and selection rules near the Dirac
point. As a result, even one monolayer of graphene gives rise to appreciable nonlinear frequency
conversion efficiency for incident infrared radiation.
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Graphene, a two-dimensional monolayer of carbon
atoms arranged in a hexagonal lattice, holds many
records as far as its mechanical, thermal, electrical, and
optical properties are concerned; see. e.g. [1] for the
review. With this Letter we would like to add yet an-
other distinction to this list of superlatives: we show that
graphene in a strong magnetic field has a giant infrared
optical nonlinearity, the highest of all materials we know.

Strong optical nonlinearity of graphene, like most of
its unique electrical and optical properties, stems from
linear energy dispersion of carriers near the K,K’ points
of the Brillouin zone. As a result, the electron velocity
induced by an incident electromagnetic wave is a non-
linear function of induced electron momentum. Non-
linear electromagnetic response of classical charges with
linear energy dispersion has been studied theoretically
in [2]. Recently, four-wave mixing in mechanically ex-
foliated graphene flakes without magnetic field has been
observed at near-infrared wavelengths [3]. Effective bulk
third-order susceptibility was estimated to have a very
large value, χ(3) ∼ 10−7 esu, which is more than an or-
der of magnitude larger than in gold films.

Nonlinear cyclotron resonance in graphene was consid-
ered theoretically in [4], again in the classical limit, by
solving the equation of motion F = dp/dt for a mass-
less charge. Classical approximation can be applied to
electrons in low magnetic field that are occupying highly
excited Landau levels n � 1, when energy and momen-
tum quantization are neglected. Here we present rigorous
quantum mechanical description of the nonlinear optical
response of graphene, which is valid for quantizing mag-
netic fields and strong optical fields, including the ef-
fect of saturation of inter-Landau level transitions. Due
to unique optical selection rules for ”massless” electrons
near the Dirac point, one can implement a four-wave mix-
ing interaction in which all optical fields are resonant to
allowed optical transitions. The resulting magnitude of
χ(3) turns out to be astonishingly large, of the order of
0.1 esu at mid/far-infrared wavelengths in the field of
several Tesla. This leads to the nonlinear signal intensity
of the order of 10 W/cm2 per monolayer for incident field
intensity close to the optical saturation.

Graphene in a magnetic field can be compared with
coupled quantum well heterostructures, where one can
also achieve fully resonant nonlinear optical interaction
involving a cascade of allowed intersubband transitions,
similarly to Fig. 1b; see e.g. [5–8]. The predicted magni-
tude of χ(3) in magnetized graphene is still many orders of
magnitude higher than the reported third-order resonant
intersubband nonlinearity χ(3) ∼ 7×10−8 esu in the mid-
infrared range for quantum cascade laser structures [6],
although the latter number could be made higher by in-
creasing doping. Other materials with non-parabolic en-
ergy dispersion of electrons, showing strong optical non-
linearity in the mid/far-infrared range, include narrow
gap semiconductors [9] and semiconductor superlattices
[10]. In both cases, the maximum predicted or measured
χ(3) was of the order of 10−9 esu.

Linear (one-photon) absorption in monolayer and bi-
layer graphene in strong magnetic fields has been calcu-
lated in [11] using Keldysh Green’s function formalism.
This approach is inconvenient when it comes to calculat-
ing the nonlinear optical response. The density matrix
formalism adopted in this paper provides a rigorous, intu-
itive, and straightforward framework for calculating the
hierarchy of nonlinear optical susceptibilities and inter-
action of strong multi-frequency EM fields or ultrashort
pulses with graphene. Expressions for one-photon ab-
sorbance obtained in [11] can be retrieved by calculating
the linear susceptibility in the limit of a weak monochro-
matic field.

In the absence of the optical field, the effective-mass
Hamiltonian [12–14] for a graphene monolayer (in the
xy plane) in the magnetic field Bẑ, in the vicinity of K
and K’ points [15] in the nearest-neighbor tight-binding
model is given by

Ĥ0 = υF


0 π̂x − iπ̂y 0 0

π̂x + iπ̂y 0 0 0
0 0 0 π̂x + iπ̂y
0 0 π̂x − iπ̂y 0


(1)

where υF is a band parameter (108 cm/s) [16, 17], ~̂π =

~̂p + e ~A/c, ~̂p is the electron momentum operator, and ~A
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is the vector potential, which is equal to (0, Bx) here.
To simplify notations, we write down the solutions to

the Schrödinger equation Ĥ0Ψ = εΨ separately near the
K and K’ point. For example, near the K point the
Hamiltonian is Ĥ0 = υF~σ · ~π, where ~σ = (σx, σy) is
a vector of Pauli matrices. The eigenfunction is spec-
ified by two quantum numbers, n and ky, where n =
0,±1,±2, · · · , and ky is the electron wave vector along y
direction [13]:

Ψn,ky (r) =
Cn√
L

exp(−ikyy)

(
sgn(n)i|n|−1φ|n|−1

i|n|φ|n|

)
(2)

with Cn = 1 when n = 0, Cn = 1/
√

2 when n 6= 0, and

φ|n| =
H|n|

(
(x− l2cky)/lc

)√
2|n||n|!

√
πlc

exp

[
−1

2

(
x− l2cky

lc

)2
]
,

where lc =
√
c~/eB and Hn(x) is the Hermite Polyno-

mial. The eigen energy is εn = sgn(n)~ωc
√
|n|, where

ωc =
√

2υF /lc.
In the presence of the incident classical optical field

~E = (1/2)êEωe
−iωt polarized along the vector ê in the

x-y plane (êLHS = [x̂− iŷ]/
√

2 and êRHS = [x̂+ iŷ]/
√

2,
which denote left-hand and right-hand circularly polar-
ized light), we add the vector potential of incident optical

field, ~Aopt = ic ~E/ω, to the vector potential of the mag-

netic field in the generalized momentum operator ~̂π in
the Hamiltonian. This results in adding the interaction
Hamiltonian Ĥint to Ĥ0, where

Ĥint = υF~σ ·
e

c
~Aopt (3)

This linear in ~Aopt expression for the interaction
Hamiltonian is exact for the Hamiltonian in Eq. (1), un-
like the case of the kinetic energy operator quadratic
in momentum, where the term proportional to A2

opt is
usually neglected. Note also that Eq. (3) does not con-
tain the momentum operator and its matrix elements are
simply determined by the matrix elements of ~σ. This
immediately gives the selection rules [11] for the transi-
tions between the LLs: êLHS photons are absorbed when
|nf | = |ni|+1, whereas êRHS photons are absorbed when
|nf | = |ni| − 1. Here ni and nf indicate initial and final
energy quantum numbers of LLs.

Now we can write a standard time-evolution equation
for the density matrix of Dirac electrons in graphene cou-
pled to an arbitrary optical field:

∂ρ̂

∂t
= − i

~
[Ĥ0 + Ĥint, ρ̂] + R̂(ρ̂). (4)

Here R̂(ρ̂) describes incoherent relaxation due to disor-
der, interaction with phonons, and many-body carrier-
carrier interactions. Equations Eq. (4) have to be solved
together with Maxwell’s equations that contain the opti-
cal polarization ~P (~r, t) = (1/V )Tr(ρ̂ · ~µ) (average dipole

moment 〈~µ〉 per unit volume) as a source term. In the
perturbative regime, they give rise to the hierarchy of
the optical susceptibilities χ(n), but they are also valid
for describing non-perturbative coupling to strong fields,
interaction with ultrashort pulses etc.

Since graphene is essentially a 2D system, it makes
sense to introduce a surface (2D) polarization Ps deter-
mined as an average dipole moment per unit area rather
than unit volume.

For a weak monochromatic field one can retain only

the term ρ
(1)
mn = (ρ

(0)
nn−ρ(0)mm)〈m|Ĥint|n〉/(εm−εn−~ω−

i~γmn) linear with respect to the field and take the sum∑
m,n ρnm~µmn to obtain an expression for the linear sus-

ceptibility:

χ(1)(ω) =
∑

n≥1;α,α′

2C2
n−1e

2υ2F
πl2c~ωωc(α

√
n− α′

√
n− 1)

× (νn,α − νn−1,α′)

(α′
√
n− 1ωc − α

√
nωc − ω − iγ)

. (5)

Here we used 〈m|Ĥint|n〉 = −(i/ω)eυF 〈m|~σ|n〉 ~E(ω)
and 〈m|~µ|n〉 = (i~/(εn − εm))eυF 〈m|~σ|n〉. Note that
the matrix element of the interaction Hamiltonian can
be written as −~̃µmn ~E, where ~̃µmn = (i/ω)eυF 〈m|~σ|n〉,
and ~̃µmn = ~µmn when εn − εm = ~ω.

We assumed for simplicity that the relaxation term
for the off-diagonal density matrix elements Rmn =
−γmnρmn and all γ’s are the same. For easy comparison,
we used the same notations for LLs as in [11]: α, α′ = ±
denote whether the corresponding state belongs to the
conduction (+) or valence (-) band and νn,α are the fill-
ing factors of LLs; a complete occupation corresponds to
ν = 2. The degeneracy of a given LL is 2/(πl2c) including
both spin and valley degeneracy. After calculating the di-
mensionless linear absorbance as (2πω/c)Im[χ(1)(ω)] we
obtain the same result as in [11].

Now we consider a specific example of the nonlinear op-
tical interaction, namely the four-wave mixing. Consider
a strong bichromatic field ~E = (1/2)( ~E1 exp(−iω1t) +
~E2 exp(−iω2t) + c.c.) normally incident on the graphene
layer. Here ω1 is nearly resonant with the transition from
n = −1 to n = 2 and ~E1 has left circular polarization.
The frequency ω2 is nearly resonant with the transition
from n = 0 to n = ±1 and ~E2 has linear polarization,
so that it couples both to transition −1→ 0 and 0→ 1,
as shown in Fig. 1. As a result of the four-wave mixing
interaction, the right-circularly polarized field ~E3 at fre-
quency ω3 = ω1−2ω2 nearly resonant with the transition
from n = 2 to n = 1 is generated.

Efficient nonlinear mixing becomes possible due to
unique selection rules ∆|n| = ±1 which enable transi-
tions with change in n greater than 1, for example the
transition from state n = −1 to state n = 2. This transi-
tion would be forbidden in conventional LL systems with
∆n = ±1 selection rule. The effective dipole moments for
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all transitions shown in Fig. 1b scale as υF /ω, i.e. they
are similar to each other within a factor of 2 and are very
large: of the order of 10-100 Å in the mid/far-IR range.
This, in combination with sharp peaks in the density of
states at LLs gives a strong nonlinear response. 1
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FIG. 1: (a): Landau levels near the K point superimposed on
the electron dispersion without magnetic field E = ±υF |p|.
(b): A scheme of resonant four-wave mixing process in the
four-level system of LLs with energy quantum numbers n =
−1, 0,+1,+2. The case of exact resonance is shown. Polar-
ization of light corresponds to the allowed transitions.

Since LLs are not equidistant, we can assume that the
optical fields interact resonantly only with states n =
−1, 0, 1, 2, which we renamed to n = 1, 2, 3, 4 in Fig. 1b.
The Hamiltonian can be truncated to a 4x4 matrix, where
(H0)mn is diagonal, with diagonal elements being the en-
ergies of corresponding LLs, and the interaction Hamil-
tonian is given by the matrix −~̃µmn ~E as specified above.
The resulting third-order nonlinear optical susceptibility
at frequency ω3 = ω1 − 2ω2, defined as the ratio of the
surface optical polarization P (ω3) = (2/A)µ34ρ43 to the
product of three fields E1(ω1)(E∗2 (ω2))2, is

χ
(3)
2D(ω3) =

−(2/πl2c)µ34µ̃41µ̃32µ̃21

(i~)3Γ43

×
(
− ρ33 − ρ22

Γ∗31Γ∗32
+
ρ22 − ρ11
Γ∗31Γ∗21

+

ρ44 − ρ11
Γ42Γ41

+
ρ22 − ρ11
Γ42Γ∗21

)
(6)

Here the complex linewidth factors in the weak-field limit
are Γ21 = γ21 + i((ε2 − ε1)/~− ω2), Γ32 = γ32 + i((ε3 −
ε2)/~− ω2), Γ41 = γ41 + i((ε4 − ε1)/~− ω1), and Γ43 =
γ43 + i((ε4 − ε3)/~− ω3).

The third-order susceptibility as defined above is a
function of the optical fields because the population dif-
ferences decrease with increasing incident pump intensity
due to the optical saturation (excitation of electrons to

higher LLs), whereas the linewidth factor Γ43 increases
with incident intensity (this is sometimes called power
broadening). These dependences are quite cumbersome;
to obtain a simple expression we assume that all fields are
in exact resonance with corresponding transitions and all

dephasing rates are the same, so that γmn = γ. The χ
(3)
2D

depends on the incident fields only through dimension-
less parameters x = |E1|/Esat

14 , y = |E2|/Esat
12 , where for

a given transition m→ n the saturation field at the line
center is Esatmn = ~

√
γ/τmn/(2µmn) and τmn is the relax-

ation time of the population difference ρmm− ρnn to the
equilibrium in the absence of the optical fields. One can
rewrite Eq. (6) as

χ
(3)
2D ∼

2µ43µ̃41µ̃32µ̃21f(x, y)

πl2c(~γ)3
∼ 3.7× 10−9f(x, y)

B(T )
esu

(7)
where the magnetic field B(T ) is expressed in Tesla,
f(x, y) is a dimensionless function of parameters x and
y, and we took γ = 3×1013 s−1 for the dephasing rate in
the numerical estimate [17]. For comparison, ωc ' 1014

s−1 at B = 3 T.

When the incident fields are weak, x, y � 1, the pop-
ulations are unperturbed. Assume for definiteness that
state 1 is fully occupied while states 2,3, and 4 are empty,
i.e. the Fermi level is between LLs n = 0 and n = −1.
Then f(x, y) = 3. When x, y become much greater than
1, f(x, y) decreases rapidly.

Equation (6) or (7) is a 2D (surface) susceptibility.
To compare with bulk materials, we divide Eq. (7) by
the monolayer thickness ∼ 3 Å to obtain the bulk

weak-field susceptibility χ
(3)
3D ∼ 0.37 (1/B(T )) esu =

5 × 10−9 (1/B(T ))m2/V2. This is by far the strongest
nonlinearity as compared to any material that we are
aware of. Of course, bulk susceptibility does not make
much sense if the sample consists of just one monolayer
of graphene.

The frequencies involved in the four-wave mixing pro-
cess fall into the mid/far-IR range for the magnetic field
of a few Tesla, as shown in Fig. 2. In particular, at B = 3
T the generated nonlinear signal is at the wavelength of
about 48 µm whereas the pump wavelengths are 8 and
20 µm.

From Maxwell’s equations, the electric field ampli-
tude E3(ω3) of the generated nonlinear signal is given

by E3 = i(2πω3/c)χ
(3)
2D(ω3)E1(E∗2 )2. The intensity of the

nonlinear signal is

I3(ω3) =

(
16π2ω3

c2

)2

|χ(3)
2D|

2I1(ω1)(I2(ω2))2. (8)

For weak incident pump fields, when x, y � 1, χ(3)

does not depend on the pump fields and the power con-
version efficiency of the nonlinear signal generation scales
as ∼ 7 × 10−5(1/B(T )) W/W3 for the illuminated area
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FIG. 2: Transition frequencies in the above 4-energy level
graphene system. ωmn indicates the transition frequency be-
tween level m and n.
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FIG. 3: Intensity of the 4-wave mixing signal as a func-
tion of the intensity of the pump field E2 normalized by
I0 = c|Esat|2/8π ' 2.2 × 105 W/cm2. The value of I0 is the
saturation intensity of the transition 1-2 calculated at B = 1
T and assuming that 1/τmn = γ = 3 × 1013 s−1. I1 is set to
satisfy y = 0.6x.

A = 10−4 cm2. For strong incident fields above satu-
ration, x, y � 1, the nonlinear signal intensity decreases
due to the optical saturation and power broadening. The
maximum intensity is reached at x ' 2.6 and y ' 1.56.
Figure 3 shows the four-wave mixing signal intensity as
a function of the pump intensity of the field E2, whereas
the second pump field is set to satisfy y = 0.6x, so that
each curve goes through the maximum. The peak non-
linear signal intensity grows with the magnetic field as
ω2
3 |χ(3)|2|Esat|6 ∝ B2 because the saturation intensity
|Esat|2 scales as 1/µ2

mn ∝ B. At x � 1 the nonlinear
signal intensity drops as 1/x2.

The presented analysis becomes invalid for very high
magnetic fields approaching ∼ 100 T, when the highest
frequency involved in the nonlinear mixing, ω41 ' 0.88
eV. At these energies the deviation from linear electron

dispersion, asymmetry between electrons and holes, and
other effects related to interaction between distant neigh-
bors in the lattice become significant [18]. In addition,
spin splitting of the LLs becomes non-negligible (about
10 meV at 100 T) [19]. We also neglect many-body and
excitonic effects.

In conclusion, graphene is a unique nonlinear-optical
system in which the most fundamental properties that
we take for granted are drastically modified. Graphene
in a strong magnetic field possesses a very high infrared
optical nonlinearity due to unique properties of quan-
tized Landau levels near the Dirac point. The nonlin-
earity is expected to be ultrafast, enabling response to
THz modulation. These properties of graphene may have
important implications for coherent nonlinear generation
and detection in the mid-infrared and THz range. One
should expect to encounter similar unusual nonlinear op-
tical properties in other materials which show a Dirac-
cone dispersion, for example topological insulators and
some high-Tc superconductors [20, 21]. This could open
interesting possibility of detection and control of topo-
logically protected states by means of nonlinear optics.
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