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Machine learning is used to approximate density functionals. For the model problem of the kinetic
energy of non-interacting fermions in 1d, mean absolute errors below 1 kcal/mol on test densities
similar to the training set are reached with fewer than 100 training densities. A predictor identifies
if a test density is within the interpolation region. Via principal component analysis, a projected
functional derivative finds highly accurate self-consistent densities. Challenges for application of our
method to real electronic structure problems are discussed.
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Each year, more than 10,000 papers report solutions
to electronic structure problems using Kohn-Sham (KS)
density functional theory (DFT) [1, 2]. All approximate
the exchange-correlation (XC) energy as a functional of
the electronic spin densities. The quality of the results
depends crucially on these density functional approxima-
tions. For example, present approximations often fail for
strongly correlated systems, rendering the methodology
useless for some of the most interesting problems.

Thus, there is a never-ending search for improved XC
approximations. The original local density approxima-
tion (LDA) of Kohn and Sham [2] is uniquely defined by
the properties of the uniform gas, and has been argued
to be a universal limit of all systems [3]. But the refine-
ments that have proven useful in chemistry [4] and mate-
rials [5] are not, and differ both in their derivations and
details. Traditionally, physicists favor a non-empirical
approach, deriving approximations from quantum me-
chanics and avoiding fitting to specific finite systems [6].
Such non-empirical functionals can be considered con-
trolled extrapolations that work well across a broad range
of systems and properties, bridging the divide between
molecules and solids. Chemists typically use a few [7, 8]
or several dozen [9] parameters to improve accuracy on a
limited class of molecules. Empirical functionals are lim-
ited interpolations that are more accurate for the molec-
ular systems they are fitted to, but often fail for solids.
Passionate debates are fueled by this cultural divide [10].

Machine learning (ML) is a powerful tool for finding
patterns in high-dimensional data. ML employs algo-
rithms by which the computer learns from empirical data
via induction, and has been very successful in many ap-
plications [11–13]. In ML, intuition is used to choose
the basic mechanism and representation of the data, but
not directly applied to the details of the model. Mean
errors can be systematically decreased with increasing
number of inputs. In contrast, human-designed empiri-
cal approximations employ standard forms derived from
general principles, fitting the parameters to training sets.

These explore only an infinitesimal fraction of all possible
functionals and use relatively few data points.

DFT is useful for electronic structure because the un-
derlying many-body Hamiltonian is simple, while accu-
rate solution of the Schrödinger equation is very demand-
ing. All electrons Coulomb repel one-another and have
spin 1/2, which makes the Hohenberg-Kohn theorem [1]
possible. But real electronic structure problems are fur-
ther limited to only those one-body potentials due to
Coulomb attraction to the nuclei. ML is a natural tool
for taking maximum advantage of this simplicity. For ML
to be useful, a pattern must exist, but one that evades
human intuition. Furthermore, most present approxima-
tions begin from LDA [2], and fail miserably when LDA is
a poor starting point. An ML-produced functional suf-
fers no such bias, and so should be most useful where
present approximations fail, if it has good examples to
train on.

Here, we adapt ML to a prototype density functional
problem: non-interacting spinless fermions confined to
a 1d box, subject to a smooth potential. We define key
technical concepts needed to apply ML to DFT problems.

FIG. 1. (color online). Comparison of a projected (see within)
functional derivative of our MLA with the exact curve.
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The accuracy we achieve in approximating the kinetic en-
ergy (KE) of this system is far beyond the capabilities of
any present approximations and is even sufficient to pro-
duce highly accurate self-consistent densities. Our ML
approximation (MLA) achieves chemical accuracy using
many more inputs, but requires far less insight into the
underlying physics.

We illustrate the accuracy of our MLA with Fig. 1, in
which the functional was constructed from 100 densities
on a dense grid. This success opens up a new approach to
functional approximation, entirely distinct from previous
approaches: Our MLA contains ∼ 105 empirical numbers
and satisfies none of the standard exact conditions.

The prototype DFT problem we consider is N non-
interacting spinless fermions confined to a 1d box, 0 ≤
x ≤ 1, with hard walls. For continuous potentials v(x),
we solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE and the elec-
tronic density n(x), the sum of the squares of the occu-
pied orbitals. Our aim is to construct an MLA for the
KE T [n] that bypasses the need to solve the Schrödinger
equation—a 1d analog of orbital-free DFT [14]. (In
(3d) orbital-free DFT, the local approximation, as used
in Thomas-Fermi theory, is typically accurate to within
10%, and the addition of the leading gradient correction
reduces the error to about 1% [15]. Even this small an er-
ror in the total KE is too large to give accurate chemical
properties.)

First, we specify a class of potentials from which we
generate densities, which are then discretized on a uni-
form grid of G points. We use a linear combination of 3
Gaussian dips with different depths, widths, and centers:

v(x) = −
3∑

i=1

ai exp(−(x− bi)
2/(2c2i )). (1)

We generate 2000 such potentials, randomly sampling
1 < a < 10, 0.4 < b < 0.6, and 0.03 < c < 0.1. For each
vj(x), we find, for N up to 4 electrons, the KE Tj,N and
density nj,N ∈ R

G on the grid using Numerov’s method
[16]. For G = 500, the error in Tj,N due to discretization
is less than 1.5× 10−7. We take 1000 densities as a test

set, and choose M others for training. The variation in
this dataset for N = 1 is illustrated in Fig. 2.

Kernel ridge regression (KRR) is a non-linear version
of regression with regularization to prevent overfitting
[17]. For KRR, our MLA takes the form

TML(n) = T̄

M∑

j=1

αjk(nj ,n), (2)

where αj are weights to be determined, nj are training
densities and k is the kernel, which measures similarity
between densities. Here T̄ is the mean KE of the train-
ing set, inserted for convenience. We choose a Gaussian

FIG. 2. (color online). The shaded region shows the extent of
variation of n(x) within our dataset for N = 1. Exact (red)
and a self-consistent (black, dashed) density for potential of
Fig. 3.

kernel, common in ML:

k(n,n′) = exp(−‖n− n
′‖2/(2σ2)), (3)

where the hyperparameter σ is called the length scale.
The weights are found by minimizing the cost function

C(α) =
M∑

j=1

∆T 2
j + λ‖α‖2, (4)

where ∆Tj = TML
j − Tj and α = (α1, . . . , αM ). The

second term is a regularizer that penalizes large weights
to prevent overfitting. The hyperparameter λ controls
regularization strength. Minimizing C(α) gives

α = (K + λI)−1
T , (5)

where K is the kernel matrix, with elements Kij =
k(ni,nj), and I is the identity matrix. Then σ and λ are
determined through 10-fold cross-validation: The train-
ing set is partitioned into 10 bins of equal size. For each
bin, the functional is trained on the remaining samples
and σ and λ are optimized by minimizing the mean abso-
lute error (MAE) on the bin. The partitioning is repeated
up to 40 times and the hyperparameters are chosen as the
median over all bins.
Table I gives the performance of TML (Eq. 2) trained

on M N -electron densities and evaluated on the corre-
sponding test set. The mean KE of the test set for
N = 1 is 5.40 Hartree (3390 kcal/mol). To contrast,
the LDA in 1d is T loc[n] = π2

∫
dxn3(x)/6 and the von

Weizsäcker functional is TW[n] =
∫
dxn′(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 217
kcal/mol and the modified gradient expansion approxi-
mation [19], TMGEA[n] = T loc[n] − c TW[n], has a MAE
of 160 kcal/mol, where c = 0.0543 has been chosen to
minimize the error (the gradient correction is not as ben-
eficial in 1d as in 3d). For TML, both the mean and
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N M λ× 1014 σ |∆T | |∆T |std |∆T |max

1

40 57600 238 3.3 3.0 23

60 10000 95 1.2 1.2 10

80 4489 48 0.43 0.54 7.1

100 12 43 0.15[3.0] 0.24[5.3] 3.2[46]

150 6.3 33 0.06 0.10 1.3

200 3.2 28 0.03 0.05 0.65

2 100 1.7 52 0.13[1.4] 0.20[3.0] 1.8[37]

3 100 4.0 74 0.12[0.9] 0.18[1.5] 1.8[14]

4 100 2.0 73 0.08[0.6] 0.14[0.8] 2.3[6]

1-4† 400 3.2 47 0.12 0.20 3.6

TABLE I. Parameters and errors (mean absolute, std. dev.,
and max abs. in kcal/mol) as a function of electron numberN
and number of training densities M . Brackets represent errors
on self-consistent densities with m = 30 and ℓ = 5. The αj

are on the order of 106 and both positive and negative [18].
†Training set includes nj,N , for j = 1, . . . , 100, N = 1, . . . , 4.

maximum absolute errors improve as N or M increases
(the system becomes more uniform as N → ∞ [3]). At
M = 80, we have already achieved “chemical accuracy,”
i.e., a MAE below 1 kcal/mol. At M = 200, no error is
above 1 kcal/mol. Simultaneously incorporating differ-
ent N into the training set has little effect on the overall
performance, and we stop at N = 4 merely for conve-
nience. Note that our accuracy is so high that energy
differences due to very subtle density changes are accu-
rately captured by our approximation.

With such unheard of accuracy, it is tempting to de-
clare “mission accomplished,” but this would be prema-
ture. A KE functional that predicts only the energy is
useless in practice, since orbital-free DFT uses functional
derivatives in self-consistent procedures to find the den-
sity within a given approximation, via

δT [n]

δn(x)
= µ− v(x), (6)

where µ is adjusted to produce the required particle num-
ber. The (discretized) functional derivative of TML is

1

∆x
∇nT

ML(n) =

M∑

j=1

α′

j(nj − n)k(nj ,n), (7)

where α′

j = αj/(σ
2∆x). This oscillates wildly relative to

the exact curve (Fig. 3), typical behavior that does not

improve with increasing M . No finite interpolation can
accurately reproduce all details of a functional derivative,
and this behavior probably worsens when more varied
densities are treated.

We overcome this problem using principal component
analysis (PCA). The space of all densities is contained

FIG. 3. (color online). Functional derivative of TML, evalu-
ated on the density of Fig. 2.

in R
G, but only a few directions in this space are rele-

vant. For a given density n, find the m training den-
sities (nj1 , . . . ,njm) closest to n. Construct the covari-
ance matrix of directions from n to each training density
C = X

⊤
X/m, where X = (nj1 − n, . . . ,njm − n)⊤.

Diagonalizing C ∈ R
G×G gives eigenvalues λj and eigen-

vectors xj which we list in decreasing order. The xj

with larger λj are directions with substantial variation
in the dataset. Those with λj below a cutoff are irrel-
evant [18]. In these extraneous dimensions, there is too
little variation within the dataset, producing noise in the
model functional derivative. By projecting onto the sub-
space spanned by the relevant dimensions, we eliminate
this noise. This projection is given by Pm,ℓ(n) = V

⊤
V ,

where V = (x1, . . . ,xℓ)
⊤ and ℓ is the number of relevant

eigenvectors. In Fig 1, with m = 30 and ℓ = 5, the pro-
jected functional derivatives are in excellent agreement.
The ultimate test for a density functional is to produce

a self-consistent density that minimizes the total energy
and check its error. This error will be several times larger
than that of the functional evaluated on the exact density.
For example, T loc on particles in 1d flat boxes always
gives 4 times larger error. To find a minimizing density,
perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small
step in the opposite direction of the projected functional
derivative of the total energy in each iteration j:

n
(j+1) = n

(j)−ǫPm,ℓ(n
(j))(v+∇nT

ML(n(j))/∆x), (8)

where ǫ is a small number and v is the discretized poten-
tial. The search is unstable if ℓ is too large, inaccurate if
ℓ is too small, and relatively insensitive to m [18].
The performance of TML in finding self-consistent den-

sities is given in Table I. Errors are an order of magnitude
larger than that of TML on the exact densities. We do
not find a unique density, but instead a set of similar den-
sities depending on the initial guess (e.g. Fig. 2). The
density with lowest total energy does not have the small-
est error. Although the search does not produce a unique
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minimum, it produces a range of similar but valid approx-
imate densities, each with a small error. Even with an
order of magnitude larger error, we still reach chemical
accuracy, now on self-consistent densities. No existing
KE approximation comes close to this performance.
What are the limitations of this approach? ML is a

balanced interpolation on known data, and should be
unreliable for densities far from the training set. To
demonstrate this, we generate a new dataset of 5000
densities with N = 1 for an expanded parameter range:
0.1 < a < 20, 0.2 < b < 0.8 and 0.01 < c < 0.3. The
predictive variance (borrowed from Gaussian process re-
gression [20])

V[TML(n)] = k(n,n)− k(n)⊤(K + λI)−1
k(n), (9)

where k(n) = (k(n1,n), . . . , k(nM ,n)), is a measure of
the uncertainty in the prediction TML(n) due to sparse-
ness of training densities around n. In Fig. 4, we plot the
error ∆T as a function of log(V[TML(n)]), for both the
test set and the new dataset, showing a clear correlation.
From the inset, we expect our MLA to deliver chemical
accuracy for log(V[TML(n)]) < −24.

FIG. 4. (color online). The correlation between MLA error
and predictive variance for N = 1, M = 100. Each point
represents a density in the test set (blue) or new dataset (red).
The vertical line denotes the transition between interpolation
and extrapolation.

Does ML allow for human intuition? In fact, the more
prior knowledge we insert into the MLA, the higher the
accuracy we can achieve. Writing T = TW + Tθ, where
Tθ ≥ 0 [14], we repeat our calculations to find an MLA
for Tθ. For N = 1 we get almost zero error, and a factor
of 2-4 reduction of error otherwise. Thus, intuition about
the functional can be built in to improve results.
The primary interest in KS DFT is XC for molecules

and solids. We have far less information about this than
in the prototype studied here. For small molecules and
simple solids, direct solutions of the Schrödinger equa-
tion yield highly accurate values of EXC. Imagine a se-
quence of models, beginning with atoms, diatomics, etc.,
in which such accurate results are used as training data

for an MLA. In the case of XC, key issues are how accu-
rate a functional can be attained with a finite number of
data, and what fraction of the density space it is accurate
for.

A more immediate target is the non-interacting KE in
KS DFT calculations. An accurate approximation would
allow finding densities and energies without solving the
KS equations, greatly increasing the speed of large cal-
culations [14]. The key differences with our prototype is
the three-dimensional nature, the Coulomb singularities,
and the variation with nuclear positions. For this prob-
lem, finding self-consistent densities is crucial, and hence
our focus here. But in the 3d case, every KS calcula-
tion ever run, including every iteration in a self-consistent
loop, generates training data—a density, KE, KS poten-
tial and functional derivative. The space of all systems
of practical interest, including both solids and molecules,
is vast, but can be approached in small steps, including
always training on ‘nearby’ densities.

Continuing the discussion of the KE functional, our
demo has been (purposely) limited to a very simple class
of potentials. But unlike traditional fitting to limited
approximate forms of a functional, there is no reason a-
priori to expect our method to scale poorly with the com-
plexity of the one-body potential. In ML, the problem is
reduced to approximating a functional by a scalar func-
tion of a high-dimensional domain (500 here). The dif-
ficulty depends on how smooth this functional is, which
determines how many training densities we need to inter-
polate accurately. We estimate the effective dimensional-
ity, or RDE [21], of our data at about 12. We anticipate
this to increase by a modest factor when dealing with
electrons of differing character (e.g. d and f electrons),
but not exponentially, for the weakly correlated systems
for which present XC functionals are useful. Moreover,
statistical learning theory shows [17, 22] that the error
of regression estimators (i.e. our method) scales asymp-
totically as 1/M with the number of training data M
for faithful models and as 1/

√
M for unfaithful ones. As

is customary in ML, none of these questions will be an-
swered until the full problem has been attempted. Pre-
liminary model calculations for bond dissociation, where
most present approximations fail due to their local na-
ture, show only a mild increase in the need for training
data [23].

Two last points: The first is that this type of empiri-
cism is qualitatively distinct from that present in the lit-
erature [10]. The choices we made are those customary in
ML, and require no intuition about the physical nature of
the problem. Second, the approximation is expressed in
terms of about 105 numbers, and only the projected func-
tional derivative is accurate. We have no simple way of
comparing such approximations to those presently pop-
ular. For example, for N = 1 in the prototype, the exact
functional is TW. How is this related to our MLA, and
how does our MLA account for this exact limit?
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