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We compute initial conditions in heavy-ion collisions within the Color Glass Condensate (CGC)
framework by combining the impact parameter dependent saturation model (IP-Sat) with the clas-
sical Yang-Mills description of initial Glasma fields. In addition to fluctuations of nucleon positions,
this IP-Glasma description includes quantum fluctuations of color charges on the length-scale de-
termined by the inverse nuclear saturation scale Qs. The model naturally produces initial energy
fluctuations that are described by a negative binomial distribution. The ratio of triangularity to
eccentricity ε3/ε2 is close to that in a model tuned to reproduce experimental flow data. We com-
pare transverse momentum spectra and v2,3,4(pT ) of pions from different models of initial conditions
using relativistic viscous hydrodynamic evolution.

A large uncertainty in the hydrodynamical description
of ultrarelativistic heavy ion collisions is our imperfect
knowledge of multi-gluon states in the nuclear wavefunc-
tions and the early-time dynamics of gluon fields after
the collision. This situation is analogous to studies of
the cosmic microwave background [1], wherein inhomo-
geneities in the observed power spectrum are sensitive to
primordial quantum fluctuations. In heavy ion collisions,
studies of observables sensitive to harmonics of hydrody-
namic flow distributions provide constraints both on the
low shear viscosity of the Quark-Gluon Plasma (QGP)
and the initial state dynamics [2–9]

An ab initio framework for multi-particle production
is the Color Glass Condensate (CGC) [10] wherein the
initial state dynamics is described by flowing Glasma
gluon fields [11, 12]. There are several sources of quan-
tum fluctuations that can influence hydrodynamic flow
on an event-by-event basis. An important source of fluc-
tuations, generic to all models of quantum fluctuations,
are fluctuations in the distributions of nucleons in the
nuclear wavefunctions. In addition there are fluctuations
in the color charge distributions inside a nucleon. This,
combined with Lorentz contraction, results in “lumpy”
transverse projections of color charge configurations that
vary event to event. The scale of this lumpiness is given
on average by the nuclear saturation scale Qs which
corresponds to distance scales smaller than the nucleon
size [13]. For each such configuration of color charges, the
Quantum Chromo-Dynamics (QCD) parton model pre-
dicts dynamical event-by-event fluctuations in the mul-
tiplicities, the impact parameters and the rapidities of
produced gluons [14].

All these sources of fluctuations are captured in the
CGC Glasma flux tube picture. The relevant feature
of this scenario is that long range rapidity correlations
from the initial state wavefunctions, coherent over 1/Qs

in the transverse plane, are efficiently transmitted into
hydrodynamic flow of the final state quark-gluon mat-
ter [15, 16].

Recently, Monte-Carlo Glauber-type models (MC-
Glauber) and Monte-Carlo implementations of the

Kharzeev-Levin-Nardi-model (MC-KLN) [17, 18] have
been compared to experimental data on elliptic and tri-
angular moments of the flow distribution. While both
types of models treat fluctuations in nucleon positions
identically, the Glauber model implementations do not
specify a mechanism for multi-particle production which
would constrain the initial energy density distribution.
MC-Glauber initial conditions [7, 19] can be tuned to re-
produce data on both elliptic and triangular flow from
RHIC and the LHC. The MC-KLN model is motivated
by the CGC with approximations that will be discussed
further below. It requires larger values of the viscosity to
entropy density ratio (η/s) relative to the Glauber model
values to describe elliptic flow data. This however leads
it to underpredict triangular flow data.
Odd flow harmonics are entirely driven by fluctua-

tions; it is therefore essential to have a realistic descrip-
tion of quantum fluctuations in multi-particle produc-
tion to properly describe the final state dynamics. To-
wards this end, we will consider in this letter the impact
parameter dependent saturation model (IP-Sat) [20, 21]
to determine fluctuating configurations of color charges
in two incoming highly energetic nuclei. This model
is formally similar to the classical CGC McLerran-
Venugopalan (MV) model of nuclear wavefunctions [22],
but additionally includes Bjorken x and impact parame-
ter dependence through eikonalized gluon distributions of
the proton that are constrained1 by HERA inclusive and
diffractive e+p deeply inelastic scattering (DIS) data [23].
Most importantly, the model is in excellent agreement
with data on n-particle multiplicity distributions in p+p
collisions at RHIC and the LHC and in A+A collisions
at RHIC [24], an essential requirement for microscopic
models. The MC-KLN model does not contain these fea-
tures; a scheme to introduce fluctuations in the model

1 The IP-Sat model gives good χ-squared fits to available small x
HERA data [23] and fixed target e+A DIS data [13]. Since the
analysis of Ref. [23], more precise data is now available; a repeat
analysis is desirable.
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has only been discussed recently [25].
The color charges ρa(x−,x⊥) in the IP-Sat/MV model

act as local sources for small x classical gluon Glasma
fields. These are determined by solving the classi-
cal Yang-Mills (CYM) equations [Dµ, F

µν ] = Jν , with
the color current Jµ = δµ+ρ(A)(x

−,x⊥) generated by
a nucleus A (B) moving along the x+ (x−) direc-
tion.2 The solution in light cone gauge A+(A−) = 0
are the pure gauge fields [22, 26, 27] Ai

A(B)(x⊥) =
i
g
VA(B)(x⊥)∂iV

†

A(B)(x⊥) and A−(A+) = 0. Here

VA(B)(x⊥) = P exp(−ig
∫

dx− ρA(B)(x−,x⊥)
∇2

T
+m2 ) is a path

ordered Wilson line in the fundamental representation,
where the infrared regulator m (of order ΛQCD) incorpo-
rates color confinement at the nucleon level.
The initial condition for a heavy-ion collision at time

τ = 0 is given by the solution of the CYM equations
in Schwinger gauge Aτ = 0, a natural choice because it
interpolates between the light cone gauge conditions of
the incoming nuclei. It has a simple expression in terms
of the gauge fields of the colliding nuclei [11]:

Ai = Ai
(A) +Ai

(B) ; Aη =
ig

2

[

Ai
(A), A

i
(B)

]

, (1)

and3 ∂τA
i = 0, ∂τA

η = 0. In the limit τ → 0,
Aη = −Eη/2, with Eη the longitudinal component of
the electric field. At τ = 0, the only non-zero compo-
nents of the field strength tensor are the longitudinal
magnetic and electric fields, which can be computed non-
perturbatively. They determine the energy density of the
Glasma at τ = 0 at each transverse position in a single
event [12, 28]. The Glasma distribution computed from
the CYM equations4 (IP-Glasma) is matched event-by-
event to viscous relativistic hydrodynamics [5, 6] to com-
pute harmonics of the flow distributions.
We will now discuss details of the computation. Nu-

cleon positions in the nucleus are sampled from a Fermi
distribution. The saturation scale Q2

s,(p)(x,b⊥) is de-
termined from the IP-Sat dipole cross section for each
nucleon, where b⊥ is the impact parameter relative
to each nucleon’s center. The color charge squared
per unit transverse area g2µ2(x,b⊥) is proportional5

to Q2
s,(p)(x,b⊥). For the nucleus, g2µ2

A(x,x⊥) is ob-

tained [31] by adding the individual nucleon g2µ2 at the
same x and transverse position x⊥ in the nucleus.

2 Light cone quantities are defined as v± = (v0±v3)/
√
2. The τ, η

coordinates are defined as τ =
√
2x+x− and η = 0.5 ln(x+/x−).

3 The metric in the (τ,x⊥, η) coordinate system is gµν =
diag(1,−1,−1,−τ2) so that Aη = −τ2Aη . The ± components
of the gauge field are related by A± = ±x±Aη .

4 As noted previously [29], the CYM approach treats soft modes
with k⊥ ≤ Qs more accurately than in commonly used k⊥ fac-
torized descriptions.

5 The exact numerical factor between the two quantities depends
on the details of the calculation [30] but will not be relevant for
our final results.

Entries  11001

 dE/dy [GeV/fm]τ1/

0 200 400 600

E
ve

nt
s

1

210

310

Entries  11001

b= 9 fm

Entries  11001

NBD
Gaussian

Poisson

Entries  11001Entries  11001

10

FIG. 1. The IP-Glasma event-by-event distribution in energy
for b = 9 fm on the lattice compared to different functional
forms. The negative binomial distribution (NBD) gives the
best fit.

The lattice formulation of the Glasma initial conditions
in Eq. (1) was first given in [32]. On a transverse lattice,
random color charges6 ρa(x⊥) are sampled from

〈ρak(x⊥)ρ
b
l (y⊥)〉 = δabδklδ2(x⊥ − y⊥)

g2µ2
A(x⊥)

Ny

, (2)

where the indices7 k, l = 1, 2, . . . , Ny represent a dis-
cretized x− coordinate [30]. For the large nuclei we con-
sider the use of such local Gaussian color charge distribu-
tions is a valid approximation8. The path orderedWilson
line is discretized as

VA(B)(x⊥) =

Ny
∏

k=1

exp

(

−ig
ρ
A(B)
k (x⊥)

∇
2
T +m2

)

. (3)

To each lattice site j we assign two SU(Nc) matri-
ces V(A),j and V(B),j , each of which defines a pure
gauge configuration with the link variables U i

(A,B),j =

V(A,B),jV
†

(A,B),j+êi
, where +êi indicates a shift from j by

one lattice site in the i = 1, 2 transverse direction. The
link variables in the future lightcone U i

j , are determined
from solutions of the lattice CYM equations at τ = 0,

tr
{

ta
[(

U i
(A) + U i

(B)

)

(1 + U i†)

−(1 + U i)
(

U i†

(A) + U i†

(B)

)]}

= 0 , (4)

6 Here, and henceforth, the distributions are evaluated at x =
〈p⊥〉/√s, for zero rapidity, where 〈p⊥〉 is the average transverse
momentum of charged hadrons in p+p collisions at a given

√
s.

7 Ny = 100 in all computations presented here.
8 Modifications to Gaussian distributions, relevant for smaller nu-
clei, have recently been explored in [33].
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where ta are the generators of SU(Nc) in the fundamental
representation (The cell index j is omitted here). The
N2

c −1 equations (4) are highly non-linear and for Nc = 3
are solved iteratively.
The total energy density on the lattice at τ = 0 is given

by

ε(τ = 0) =
2

g2a4
(Nc − Re trU�) +

1

g2a4
trE2

η , (5)

where the first term is the longitudinal magnetic energy,
with the plaquette given by U j

�
= Ux

j Uy
j+x̂ U

x†
j+ŷ U

y†
j .

The explicit lattice expression for the longitudinal elec-
tric field in the second term can be found in Refs. [32, 34].
We note that the boost-invariant CYM framework ne-
glects fluctuations in the rapidity direction. Anisotropic
flow at mid-rapdity is dominated by fluctuations in the
transverse plane but fluctuations in rapidity could have
an effect on the dissipative evolution; the framework to
describe these effects has been developed [35] and will
be addressed in future work. Other rapidity dependent
initial conditions are discussed in Ref. [36].
In Fig. 1 we show the event-by-event fluctuation in

the initial energy per unit rapidity. The mean was ad-
justed to reproduce particle multiplicities after hydro-
dynamic evolution. This and all following results are for
Au+Au collisions at RHIC energies (

√
s = 200AGeV) at

midrapidity. The best fit is given by a negative binomial
(NBD) distribution, as predicted in the Glasma flux tube
framework [37]; our result adds further confirmation to a
previous non-perturbative study [38]. The fact that the
Glasma NBD distribution fits p+p multiplicity distribu-
tions over RHIC and LHC energies [24] lends confidence
that our picture includes fluctuations properly.
We now show the energy density distribution in the

transverse plane in Fig. 2. We compare to the MC-KLN
model and to an MC-Glauber model that was tuned to
reproduce experimental data [5, 9]. In the latter, for ev-
ery participant nucleon, a Gaussian distributed energy
density is added. Its parameters are the same for ev-
ery nucleon in every event, with the width chosen to be
0.4 fm to best describe anisotropic flow data. We will
also present results for a model where the same Gaus-
sians are assigned to each binary collision. The resulting
initial energy densities differ significantly. In particular,
fluctuations in the IP-Glasma occur on the length-scale
Q−1

s (x⊥), leading to finer structures in the initial energy
density relative to the other models. As noted in [25],
this feature of CGC physics is missing in the MC-KLN
model.
We next determine the participant ellipticity ε2 and

triangularity ε3 of all models. Final flow of hadrons vn is
to good approximation proportional to the respective εn
[39], which makes these eccentricities a good indicator of
what to expect for vn. We define

εn =

√

〈rn cos(nφ)〉2 + 〈rn sin(nφ)〉2
〈rn〉 , (6)

FIG. 2. (Color online) Initial energy density (arbitrary units)
in the transverse plane in three different heavy-ion collision
events: from top to bottom, IP-Glasma, MC-KLN and MC-
Glauber [9] models.

where 〈·〉 is the energy density weighted average. The re-
sults from averages over ∼ 600 events for each point plot-
ted are shown in Fig. 3. The ellipticity is largest in the
MC-KLN model and smallest in the MC-Glauber model
with participant scaling of the energy density (Npart).
The result of the present calculation lies in between,
agreeing well with the MC-Glauber model using binary
collision scaling (Nbinary). We note however that this
agreement is accidental; binary collision scaling of eccen-
tricities, as shown explicitly in a previous work applying
average CYM initial conditions [40], does not imply bi-
nary collision scaling of multiplicities.

The triangularities are very similar, with the MC-KLN
result being below the other models for most impact pa-
rameters. Again, the present calculation is closest to the
MC-Glauber model with binary collision scaling. There
is no parameter dependence of eccentricities and trian-
gularities in the IP-Glasma results shown in Fig. 3. It
is reassuring that both are close to those from the MC-
Glauber model because the latter is tuned to reproduce
data even though it does not have dynamical QCD fluc-
tuations.

We have checked that our results for ε2, ε3 are insensi-
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FIG. 3. (Color online) Average participant ellipticity (upper
panel) and triangularity (lower panel) of the initial state. This
calculation (circles), MC-KLN (squares), Glauber implemen-
tation with participant and binary collision scaling (triangles).

tive to the choice of the lattice spacing a, despite a log-
arithmic ultraviolet divergence of the energy density at
τ = 0 [41]. They are furthermore insensitive to the choice
of g, the ratio g2µ/Qs, and the uncertainty in Bjorken x
at a given energy.
Finally, in Fig. 4 we present results for the transverse

momentum spectrum and anisotropic flow of thermal
pions after evolution using music [5, 42] with boost-
invariant initial conditions and shear viscosity to entropy
density ratio η/s = 0.08. Average maximal energy den-
sities of all models were normalized to assure similar fi-
nal multiplicities. More pronounced hot spots, as em-
phasized previously [43], affect the particle spectra ob-
tained from flow, leading to harder momentum spectra in
the present calculation compared to MC-KLN and MC-
Glauber models. Differences in v2(pT ) and v3(pT ) are
as expected from the initial eccentricities of the different
models.
As discussed at the outset, MC-KLN fails to describe

experimental v2 and v3 simultaneously [7, 19] because of
its small ratio ε3/ε2. The fluctuating IP-Glasma initial
state presented here has a larger ε3/ε2, closer to that of
the MC-Glauber model that is tuned to describe experi-
mental vn reasonably well [9].
In summary, we introduced the IP-Glasma model
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FIG. 4. (Color online) Thermal π+ transverse momentum
spectra (upper) and anisotropic flow coefficients v2, v3, and
v4 as functions of pT (lower) from IP-Glasma initial conditions
(solid), MC-KLN (dashed), MC-Glauber using participant
scaling (dotted) and binary collision scaling (dash-dotted).

of fluctuating initial conditions for heavy-ion collisions.
This model goes beyond the MC-KLN implementation
by using CYM solutions instead of k⊥-factorization and
including quantum fluctuations on the dynamically gen-
erated transverse length scale 1/Qs. Further, unlike MC-
KLN, its parameters are fixed by HERA inclusive and
diffractive e+p DIS data. At fixed impact parameter, this
model naturally produces NBD multiplicity fluctuations
that are known to describe p+ p and A+A multiplicity
distributions, and its ratio of initial triangularity to ec-
centricity is more compatible with experimental data of
harmonic flow coefficients.

Looking forward, an improved matching to the hydro-
dynamic description, starting at time τ0, can be achieved
by including classical Yang-Mills evolution of the system
up to this time. However, we do not expect a signifi-
cant modification of the presented results for ε2 and ε3
as suggested by previous work [40]. Further refinements
include treating color charge correlations encoded in the
JIMWLK hierarchy for improved rapidity and energy dis-
tributions [44, 45] and eliminating arbitrariness in choice
of thermalization time by an ab initio treatment of ther-
malization [35, 46–48]. Detailed studies of higher flow
harmonics using dissipative hydrodynamic simulations
and comparison to experimental data will allow for fur-
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ther discrimination between different initial conditions.
Specifically, it would be interesting to see if these com-
parisons are able to distinguish between our Glasma flux
tube scenario with granularity on the energy dependent
scale 1/Qs and other non-perturbative string scenarios
which share common features such as NBD fluctuations
but are sensitive to 1/ΛQCD [36, 49, 50].
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