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Using the effective Lagrangian approach, we clarify general issues about Nambu–Goldstone bosons
without Lorentz invariance. We show how to count their number and study their dispersion relations.
Their number is less than the number of broken generators when some of them form canonically
conjugate pairs. The pairing occurs when the generators have a nonzero expectation value of their
commutator. For non-semi-simple algebras, central extensions are possible. Underlying geometry
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Introduction. —Spontaneous symmetry breaking
(SSB) is ubiquitous in nature. The examples include
magnets, superfluids, phonons, Bose–Einstein conden-
sates (BEC), and neutron stars. When continuous
and global symmetries are spontaneously broken, the
Nambu–Goldstone theorem [1–3] ensures the existence
of gapless excitation modes, i.e., Nambu–Goldstone
bosons (NGBs). Since the long-distance behavior of
systems with SSB is dominated by NGBs, it is clearly
important to have general theorems on their number of
degrees of freedom (d.o.f.) and dispersion relations.
In Lorentz-invariant systems, the number of NGBs

nNGB is always equal to the number of broken genera-
tors nBG. All of them have the identical linear dispersion
ω = c|k|. However, once we discard the Lorentz invari-
ance, the situation varies from one system to another.
Until recently, systematic studies on NGBs without

Lorentz invariance have been limited. (See Ref. [4] for a
recent review.) Nielsen and Chadha [5] classified NGBs
into two types: Type-I (II) NGBs have dispersion rela-
tions proportional to odd (even) powers of their momenta
in the long-wavelength limit. They proved nI + 2nII ≥
nBG, where nI (nII) is the number of Type-I (II) NGBs.
Schäfer et al. [6] showed that nNGB is exactly equal to
nBG if 〈0|[Qi, Qj]|0〉 vanishes for all pairs of the symme-
try generatorsQi. Similar observation is given in Ref. [7].
Given these results, Brauner and one of us (HW) [8] con-
jectured

nBG − nNGB =
1

2
rank ρ, (1)

ρij ≡ lim
Ω→∞

−i

Ω
〈0|[Qi, Qj]|0〉, (2)

where Ω is the spatial volume of the system.
In this Letter, we clarify these long-standing ques-

tions about the NGBs in Lorentz-non-invariant systems
by proving the conjecture and showing the equality in
Nielsen-Chadha theorem with an improved definition us-
ing effective Lagrangians Leff . We also clarify how the

central extension of the Lie algebra makes a contribution
to ρ [9].

Coset Space. —When a symmetry group G is spon-
taneously broken to its subgroup H , the space of ground
states form the coset space G/H where two elements of G
are identified if g1 = g2h for ∃h ∈ H . Every point on this
space is equivalent under the action of G, and we pick
one as the origin. The unbroken group H leaves the ori-
gin fixed, while the broken symmetries move the origin to
any another point. The infinitesimal action of G is given
in terms of vector fields hi = h a

i ∂a (i = 1, · · · , dimG) on
G/H , where ∂a = ∂

∂πa with the local coordinate system
{πa} (a = 1, · · · , nBG = dimG− dimH) around the ori-
gin. The infinitesimal transformations hi satisfy the Lie
algebra [hi,hj ] = fk

ijhk. We can always pick the coordi-
nate system s.t. πas transform linearly under H , namely
that hi = πbRp(Ti)

a
b ∂a, where R

p(Ti) is a representation
of H [10]. On the other hand, the broken generators are
realized non-linearly, hb = h a

b (π)∂a with h a
b (0) ≡ X a

b .
Since broken generators form a basis of the tangent space
at the origin, the matrix X must be full-rank and hence
invertible.

The long-distance excitations are described by the
NGB fields πa(x) that map the space-time into G/H .
We now write down its Leff in a systematic expansion
in powers of derivatives, because higher derivative terms
are less important at long distances.

Effective Lagrangians without Lorentz invariance. —
We discuss the Leff for the NGB d.o.f. following
Refs. [11, 12]. Under global symmetry G, the NGBs
transform as δπa = θih a

i where θi are infinitesimal pa-
rameters. However, we do not make θi local (gauge) un-
like in these papers because it puts unnecessary restric-
tions on possible types of symmetries and their realiza-
tions, as we will see below.

It is well-known that a symmetry transformation can
change the Lagrangian density by a total derivative.
The examples include space-time translations, supersym-
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metry, and gauge symmetry in the Chern–Simons the-
ory [13]. We allow for this possibility in the Leff of the
NGB fields. We assume spatial translational invariance
and rotational invariance at sufficiently long distances in
the continuum limit, while we can still discuss their SSB.
If Lorentz invariant, the Leff is highly constrained,

Leff =
1

2
gab(π)∂µπ

a∂µπb +O(∂4µ). (3)

The invariance of the Lagrangian under G requires that
gab is a G-invariant metric on G/H , namely ∂cgabh

c
i +

gac∂bh
c
i + gcb∂ah

c
i = 0. When the coordinates πa are

reducible under H , the metric g is a direct sum of irre-
ducible components gab =

∑

p F
2
p δ

p
ab where δpab vanishes

outside the irreducible representation p with arbitrary
constants Fp for each of them.
On the other hand, once we drop Lorentz invariance,

the general Leff has substantially more freedom,

Leff = ca(π)π̇
a +

1

2
ḡab(π)π̇

aπ̇b −
1

2
gab(π)∂rπ

a∂rπ
b

+O(∂3t , ∂t∂
2
r , ∂

4
r ), (4)

where ḡab is also G-invariant. Here and hereafter, r =
1, · · · , d refers to spatial directions.
Note that the spatial isotropy does not allow terms

with first derivatives in space in the Leff . Therefore, the
spatial derivatives always start with at least the second
power O(∂2r ). (Actually, it is not critical for us whether
there are terms of O(∂2r ); it may as well start at O(∂4r )
without affecting our results, as we will see below.)
The Lagrangian density changes by a total derivative

under the infinitesimal transformation δπa = θih a
i iff

(∂bca − ∂acb) h
b

i = ∂aei. (5)

The functions ei(π) introduced in this way are actually
related to the charge densities of the system. By pay-
ing attention to the variation of the Lagrangian by the
surface term

δLeff = θi∂t(cah
a
i + ei), (6)

we can derive the Noether current for the global sym-
metry j0i = ei − ḡabh

a
i π̇

b. For the ground state is time
independent π̇b = 0,

ei(0) = 〈0|j0i (x)|0〉. (7)

It must vanish in the Lorentz-invariant case, which can
be understood as the special situation where ca and ei
vanish, and gab = c2ḡab.
Before presenting the proof, we explain the advantage

in not gauging the symmetry. A tedious calculation ver-
ifies ∂c(h

a
i ∂aej − fk

ijek) = 0, with a general solution,

h a
i ∂aej = fk

ijek + cij . (8)

Therefore, ei(π) transform as the adjoint representation
under G, up to possible integration constants cij = −cji.
These constants play important roles as seen below.
In presence of such constants, the global symmetry

cannot be gauged [11]. This is reminiscent of the Wess–
Zumino term that also changes by a surface term under
a global symmetry and produces an anomaly upon gaug-
ing [14, 15]. It is known that the constants can be chosen
to vanish with suitable definitions of ei for semi-simple
Lie algebras, while a non-trivial second cohomology of
the Lie algebra presents an obstruction [16].
Proof of the conjecture. —The basic point to show is

that when ρij 6= 0, the NGB fields for the generators i
and j are canonically conjugate to each other.
From Eq. (7) and the assumed translational symmetry,

the formula for ρ in Eq. (2) is reduced to

ρij = −i〈0|[Qi, j
0
j ]|0〉 = h a

i ∂aej
∣

∣

π=0
. (9)

Obviously, this must vanish for unbroken generators by
definition. Combining this with Eq. (5), we have

h a
i h

b
j (∂bca − ∂acb)

∣

∣

π=0
= ρij . (10)

We now solve this differential equation around the origin.
The Taylor expansion of ca(π) can be written as ca(π) =
ca(0)+(Sab+Aab)π

b+O(π2), where Sab and Aab stand for
the symmetric and antisymmetric part of the derivative
∂bca|π=0. Obviously ca(0) and Sab lead to only total
derivative terms in the Leff thus will be dropped later:

ca(π)π̇
a = Aabπ̇

aπb + ∂t

[

ca(0)π
a +

1

2
Sabπ

aπb

]

+O(π3).

(11)
The equation for the antisymmetric part 2X a

c X b
d Aab =

ρcd has an unique solution which gives

ca(π)π̇
a =

1

2
ρab ˙̃π

aπ̃b +O(π̃3), (12)

where π̃a ≡ πb(X−1) a
b . Since the matrix ρ is real

and antisymmetric, we can always transform it into the
following form by a suitable orthogonal transformation
Q̃i = OijQj:

ρ =





















M1

. . .

Mm

0
. . .

0





















, Mα =

(

0 λα
−λα 0

)

.

(13)
Here, λα 6= 0 for α = 1, · · · ,m = 1

2
rank ρ, while the

remaining elements identically vanish.
The most important step in the proof is to write down

the explicit expression of the Leff in Eq. (4),

ca(π)π̇
a =

m
∑

α=1

1

2
λα(π̃

2α ˙̃π2α−1 − ˙̃π2απ̃2α−1), (14)
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which is in the familiar form of the Lagrangian on the
phase space L = piq̇

i −H [17]. Namely, π̃2α−1 and π̃2α

are canonically conjugate variables, and they together
represent one d.o.f. rather than two. Hereafter we call
the first set of π̃as (a = 1, · · · 2m) Type-B, while the rest
Type-A. Hence, nA + 2nB = nBG with nA = nBG − 2m
and nB = m. Thus we proved the conjecture Eq. (1).

The definition of a d.o.f. here is the conventional one in
physics, i.e., one needs to specify both the instantaneous
value and its time derivative for each degree of freedom
as initial conditions. This definition does not depend on
the terms with spatial derivatives in the Lagrangian.

Now we are in the position to prove that the equality
is satisfied in the Nielsen–Chadha theorem if the term
with two spatial derivatives exists with a non-degenerate
metric gab. Then Eq. (4) implies that the Type-A NGB
fields have linear dispersion relations ωa ∝ k, while the
Type-B NGB fields quadratic dispersions ωα ∝ k2. In
this case, our Type-A (B) coincides with their Type-I
(II) respectively, and the Nielsen–Chadha inequality is
saturated.

On the other hand, if we allow the second-order term
O(∂2r ) to vanish accidentally but the fourth-order term
O(∂4r ) to exist, the unpaired (Type-A) NGBs happen to
have a quadratic dispersion (ω2 ∝ k4, and hence Type-II)
yet count as independent d.o.f. each [8]. Therefore, the
Nielsen–Chadha theorem is still an inequality in general.
In contrast, our distinction between Type-A and Type-B
NGBs is clearly determined by the first two time deriva-
tives, and defines the number of d.o.f. unambiguously.
Therefore, the classification between odd and even pow-
ers in the dispersion relation is not an essential one, and
our theorem is stronger than that by Nielsen–Chadha.

Note that the Lagrangian formalism is mandatory in
our discussion, because the presence of the first-order
derivatives in time essentially affects the definition of
the canonical momentum, while a Hamiltonian is writ-
ten with a fixed definition of the canonical momentum.

Examples. —The simplest and most famous example
of a Type-B NGB is the Heisenberg ferromagnet H =
−J

∑

〈i,j〉 si · sj with J > 0 on a d-dimensional square

lattice (d > 1). In this case, the original symmetry group
O(3) is spontaneously broken down to the subgroup O(2).
The coset space is O(3)/O(2) ∼= S2. We assume that the
ground state has all spins lined up along the positive z
direction without a lack of generality. Even though there
are two broken generators, there is only one NGB with
the quadratic dispersion relation ω ∝ k2.

The coset space can be parametrized as (nx, ny, nz) =
(

π1, π2,
√

1− (π1)2 − (π2)2
)

. The O(3) transformation
h a
i = ǫiajnj (i, j = x, y, z; a = 1, 2) is realized linearly

for unbroken generator h a
z (π) = ǫabπ

b, while nonlinearly
for broken ones X b

a = ǫab. One can show that the Leff

consistent with the O(3) symmetry up to O(∂2) is

Leff = m
nyṅx − nxṅy

1 + nz

+
1

2
F̄ 2

ṅ
2 −

1

2
F 2∂rn∂rn. (15)

Comparing to definitions Eqs. (4) and (5), we can read off
ca and ei as c1 =

mny

1+nz

, c2 = − mnx

1+nz

and ei = mni. Hence

m = 〈j0z 〉 represents the magnetization of the ground
state. It is clear that there is only one Type-B NGB be-
cause π1 and π2 are canonically conjugate to each other,
with a quadratic dispersion ω ∝ k2.
However for an anti-ferromagnet, J < 0, the overall

magnetization cancels between sublattices, and therefore
ei = 0, which in turn requires ca = 0. As a consequence,
the lowest order term in the time derivative expansion
has two powers, and we find that both π1 and π2 repre-
sent independent Type-A NGBs with linear dispersions
ω ∝ |k|. The generalization to the ferrimagnetic case is
straightforward.
Another example is the spontaneously broken transla-

tional invariance that leads to acoustic phonons in an
isotropic medium [18]. The displacement vector u(x)
represents the NGBs under the spatial translation u →
u + θ, hence G = R3 and H = 0. Then with O(3) sym-
metry of spatial rotations, the most general form of the
continuum Leff is

Leff =
1

2
u̇
2 −

c2ℓ
2
(∇ · u)2 −

c2t
2
(∇× u)2. (16)

We recover the usual result of one longitudinal and two
transverse phonons with linear dispersions ω = cℓk and
ω = ctk, respectively (Type-A). When the O(3) sym-
metry is reduced to SO(2) × Z2 for rotation in the xy-
plane and the reflection z → −z, there are considerably
more terms one can write down. Using the notation
ψ = ux + iuy, ∂ = 1

2
(∂x − i∂y), and ψ̄ and ∂̄ for their

complex conjugates, the most general Leff is

Leff =
icxy
2
ψ̄ψ̇ +

1

2
u̇2z +

˙̄ψψ̇ − F 2
0 (∂̄ψ)(∂ψ̄)−

1

2
F 2
1 (∂zuz)

2

−(∂̄uz, ∂zψ)

(

F 2
2 F 2

3

F 2
3 F 2

4

)(

∂uz
∂zψ̄

)

−
1

2
(F 2

5 (∂ψ)
2 + c.c.).

(17)

With cxy 6= 0, we find there is one Type-A NGB with a
linear dispersion, and one Type-B NGB with a quadratic
dispersion. The first term

icxy

2
ψ̄ψ̇ = 1

2
cxy(uyu̇x − uxu̇y)

implies

ρxy = −i〈0|[Px, j
0
y ]|0〉 = cxy 6= 0. (18)

Namely, this Lie algebra is a central extension of
the abelian algebra of the translation generators, i.e.

[Pi, Pj ] = cijΩ. As pointed out in Ref. [19], when the
medium is electrically charged, an external magnetic field
along the z-axis precisely leads to this behavior with
cxy = 2ωc (the cyclotron frequency), because the gauge-
invariant translations in a magnetic field are generated by



4

Pi = −i~∂i−
e
c
Ai, which satisfy 〈0|[Px, Py]|0〉 = i~e

c
BzN

with the number of the particles N . This would not be
possible with the gauged Leff in Ref. [11] that does not
allow for the central extension.
As a more nontrivial example, let us consider a spinor

BEC with F = 1. The symmetry group is G = SO(3) ×
U(1), where SO(3) rotates three components of F = 1
states, while U(1) symmetry gives the number conserva-
tion. The Lagrangian is written using a three-component
complex Schrödinger field ψ,

L = i~ψ†ψ̇−
~2

2m
∂rψ

†∂rψ+µψ†ψ−
λ

4
(ψ†ψ)2−

κ

4
|ψTψ|2.

(19)

Since the potential reads λ+κ
2
n̂2 − µn̂ − κ

2
Ŝ

2 (n̂ ≡ ψ†ψ,

Ŝ ≡ ψ†
Sψ and S is the 3 by 3 spin matrix), we identify

two possibilities for condensates

ψ = vp(0, 0, 1)
T or vf (1, i, 0)

T (20)

for “polar” (−λ < κ < 0) or “ferromagnetic” (κ > 0)

states, where vp =
√

2µ
λ+κ

and vf =
√

µ
λ
[20]. The magne-

tization density is given by ei(0) = 〈j0i 〉 = −i~ǫijkψ
∗
jψk.

In the polar case, there is no net magnetization, and
the symmetry is broken to H = SO(2) ⊂ SO(3). For
the ferromagnetic case, there is a net magnetization
ez(0) = 2~v2f , and the symmetry is broken to the di-
agonal subgroup H of U(1) and SO(2) ⊂ SO(3). There-
fore, the unbroken symmetry is the same for both cases
(H = SO(2) = U(1)), yet we see three Type-A NGBs for
the polar case while one Type-A and one Type-B NGB
for the ferromagnetic case as shown below.
For the polar case, we parameterize ψ as

ψ = (vp + h)eiθ(~n+ i~χ), ~n2 = 1, ~χ ⊥ ~n. (21)

After integrating out the gapped modes h and ~χ, the
Lagrangian (19) becomes

Leff =
~2

λ+ κ
θ̇2 +

~2

|κ|
~̇n2 −

~2v2p
2m

[

(∂rθ)
2 + (∂r~n)

2
]

. (22)

We do find three Type-A NGBs with linear dispersions.
For the ferromagnetic case, we parameterize ψ as

ψ = (vf + h)
eiθ

1 + z∗z
(1− z2, i(1 + z2), 2z)T . (23)

After integrating out h, we find

Leff = 2~v2f i
z∗ż − ż∗z

1 + z∗z
+

~2

λ

(

θ̇ − i
z∗ż − ż∗z

1 + z∗z

)2

−
~2v2f
m

[

(

∂rθ − i
z∗∂rz − ∂rz

∗z

1 + z∗z

)2

+
2∂rz

∗∂rz

(1 + z∗z)2

]

.(24)

Clearly, z and z∗ are canonically conjugate to each other,
representing one Type-B NGB with a quadratic disper-
sion, while θ one Type-A NGB with a linear dispersion.

Underlying Geometry. —Having demonstrated our
theorem Eq. (1) at work in very different examples, we
now study the underlying geometry. Usually, canonically
conjugate pairs in mechanics (such as Type-B NGBs) im-
ply a symplectic structure mathematically, which requires
an even-dimensional manifold M , and if closed, a non-
trivial second de Rham cohomology H2(M) 6= 0. How-
ever, we have seen in the last two examples that Type-A
and Type-B NGBs can coexist on an odd-dimensionalM
with H2(M) = 0. This puzzle can be solved as follows.
The time integral of the first term in Eq. (4) defines a

one-form c = cadπ
a on the coset space, and its exterior

derive a closed two-form σ = dc. Using the coordinates
in Eq. (14), σ =

∑m
α=1 λαdπ̃

2α ∧ dπ̃2α−1 for m Type-B
NGBs, which resembles a symplectic two-form. However,
Type-A NGB fields for the remaining nBG − 2m broken
generators do not have terms with first order in time
derivatives, and hence do not take part in σ. Therefore,
σ has a constant rank but is degenerate, and hence is not
a symplectic structure in the usual sense.
This kind of a partially symplectic (or presymplec-

tic [16]) structure is possible on a coset space by con-

sidering the following fiber bundle, F →֒ G/H
π
→ B,

where the base space B = G/(H×F ) is symplectic. The
fiber F is a subgroup of G that commutes with H . The
symplectic structure ω on B is pulled back to G/H as
σ = π∗ω. Since dω = 0 on B implies dσ = 0 on G/H ,
we can always find a one-form c such that dc = σ locally
on G/H , which appears in Leff . Type-B NGBs live on
the symplectic base manifold B, whose coordinates form
canonically conjugate pairs, while the Type-A NGBs live
on the fiber F , each coordinate representing an indepen-
dent NGB. The Type-A and Type-B NGBs can coexist
on G/H in this fashion.
The Heisenberg ferromagnetic model has the coset

space S2 = CP1 which is Kähler and hence symplectic,
with one Type-B NGB. On the other hand, the spinor
BEC example in its ferromagnetic state has G/H = RP3

which is not symplectic. The last term in Eq. (24) is noth-
ing but the Fubini–Study metric on S2 = CP1 which is
Kähler and hence symplectic. The first term in Eq. (24)
defines the one-form c whose exterior derivative dc gives
precisely the Kähler form associated with the metric up
to normalization. However θ is an orthogonal direction
with no connection to the symplectic structure. We can
define the projection π : RP3 → S2 simply by eliminating
the θ coordinate. It shows the structure of a fiber bun-
dle U(1) →֒ RP3 π

→ CP1, which is the well-known Hopf
fibration (the difference between S3 and RP3 = S3/Z2

is not essential here). The phonons in the magnetic field
also show a partially symplectic structure.
In fact, it is always possible to find such a symplectic

manifold B if G is compact semi-simple, thanks to the
Borel’s theorem [21]. Generalizations to non-semi-simple
groups would be an interesting future direction in math-
ematics.



5

Final Remarks. —In this Letter, we exclusively fo-
cused on true NGBs. We do not regard pseudo NGBs [22]
as NGBs, since they do not correspond to the broken
symmetries and tend to acquire mass corrections. Also,
we assumed there are no gapless excitations other than
NGBs; especially, this assumption fails when there is a
Fermi surface on the ground state. Taking such d.o.f.

into account would be another interesting future direc-
tion.
We thank T. Brauner, D. Stamper-Kurn, M. Ueda,

and K. Hori for useful discussions. HW is also grateful
to T. Hayata and HM to T. Milanov. The work of HM
was supported in part by the U.S. DOE under Contract
DE-AC03-76SF00098, in part by the NSF under grant
PHY-1002399, the JSPS grant (C) 23540289, and in part
by WPI, MEXT, Japan.

∗ hwatanabe@berkeley.edu
† hitoshi@berkeley.edu, hitoshi.murayama@ipmu.jp

[1] Y. Nambu and G. Jona-Lasinio,
Phys. Rev. 122, 345 (1961).

[2] J. Goldstone, Il Nuovo Cimento 19, 154 (1961).
[3] J. Goldstone, A. Salam, and S. Weinberg,

Phys. Rev. 127, 965 (1962).

[4] T. Brauner, Symmetry 2, 609 (2010).
[5] H. B. Nielsen and S. Chadha,

Nucl. Phys. B 105, 445 (1976).
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