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Many inflationary theories introduce new scalar, vector, or tensor degrees of freedom that may
then affect the generation of primordial density perturbations. Here we show how to search a galaxy
(or 21-cm) survey for the imprint of primordial scalar, vector, and tensor fields. These new fields
induce local departures to an otherwise statistically isotropic two-point correlation function, or
equivalently, nontrivial four-point correlation functions (or trispectra, in Fourier space), that can be
decomposed into scalar, vector, and tensor components. We write down the optimal estimators for
these various components and show how the sensitivity to these modes depends on the galaxy-survey
parameters. New probes of parity-violating early-Universe physics are also presented.

PACS numbers: 98.80.-k

INTRODUCTION

Galaxy clustering has proven to be invaluable in as-
sembling our current picture of a Universe with a nearly
scale-invariant spectrum of the primordial curvature per-
turbations [1]. The principal tool in clustering studies
has been the two-point correlation function, or in Fourier
space the power spectrum, determined under the assump-
tion of statistical homogeneity (SH). With the advent of
new generations of galaxy surveys, as well as longer-term
prospects for measuring the primordial mass distribution
with 21-cm surveys of the epoch of reionization [2] and/or
dark ages [3], it is worthwhile to think about what can
be further done with these measurements.

Many inflationary models introduce new fields that
may couple to the inflaton responsible for generating cur-
vature perturbations. The effects of these fields may
then appear as local departures from SH, or as non-
Gaussianity, in the curvature perturbation. For exam-
ple, models with an additional scalar field introduce
a nontrivial four-point correlation function (or trispec-
trum, in Fourier space) [4], which we below will describe
as local departures from statistical homogeneity; apart
from this correlation, the scalar field may leave no vis-
ible trace. There may also be vector (spin-1) fields V µ

[5]—or vector spacetime-metric perturbations brought to
life in alternative-gravity theories [6]—that, if coupled to
the inflaton ϕ (e.g., through a term (∂µϕ)(∂νϕ)∂µV ν)
may leave an imprint on the primordial mass distribu-
tion without leaving any other observable trace. Similar
correlations with a tensor (i.e., spin-2) field Tµν (e.g.,
(∂µϕ)(∂νϕ)Tµν) can be envisioned. Even in the absence
of new fields, there are tensor metric perturbations (grav-
itational waves) that may have higher-order correlations
with the primordial curvature perturbation [7, 8]. Tensor
distortions to the two-point correlation function (“metric
shear”) may also be introduced at late times [9, 10], and
late-time nonlinear effects may induce scalar-like distor-
tions to the two-point function [11].

Here we describe how the fossils of primordial tensor,
vector, and scalar fields are imprinted on the mass distri-
bution in the Universe today. We express these relics in
terms of two-point correlations that depart locally from
SH or off-diagonal correlations of the density-field Fourier
components. This formalism allows the correlations to be
decomposed geometrically into scalar, vector, and tensor
components. We write down the optimal estimators for
these scalar, vector, and tensor correlations and quantify
the amplitudes that can be detected if these perturba-
tions have (as may be expected in inflationary models)
nearly scale-invariant spectra.

We begin with the null hypothesis that primordial den-
sity perturbations are statistically isotropic and Gaus-
sian. This implies that the Fourier modes δ(k) of the
density perturbation δ(x) (at some fixed time) have co-
variances, 〈δ(k)δ(k′)〉 = V δDk,−k′P (k), where the Kro-
necker (Dirac) delta on the right-hand side is zero unless
k = −k′, P (k) is the matter power spectrum, and V is
the volume of the survey. In other words, the different
Fourier modes of the density field are uncorrelated under
the null hypothesis.

Coupling of the inflaton to some other field produces
non-Gaussianity in the mass distribution that appears as
off-diagonal (i.e., k1 6= −k2) correlations of the density-
field Fourier components in the presence of a given real-
ization of the new field. Global SH requires that a given
Fourier mode hp(K) of wavevector K and polarization p
(about which we will say more below) of the new field
induces a correlation,

〈δ(k1)δ(k2)〉|hp(K) = fp(k1,k2)h∗p(K)εpij(K)ki1k
j
2δ
D
k123

,

(1)
where δDk123

is shorthand for a Kronecker delta that sets
k1 + k2 + K = 0. Note that hp(K) here are the new-
field Fourier components during inflation when their ef-
fect on primordial perturbations is imprinted. The func-
tion fp(k1,k2) is related to the density-density–new-field
bispectrum Bp(k1, k2,K) and new-field power spectrum

Pp(K) through Bp(k1, k2,K) ≡ Pp(K)fp(k1,k2)εpijk
i
1k
j
2.
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FIG. 1: left six : The six possible types of distortions to an otherwise statistically isotropic two-point correlation function for
a single Fourier mode, aimed in the ẑ direction, of the distortion pattern. The distortions to the sphere show the distortions
of the two-point correlation function as one moves along the direction ẑ of the Fourier mode. The first two modes are the
usual transverse-traceless tensor polarizations (gravitational waves), in which there are quadrupolar distortions in the plane
transverse to the direction ẑ of the wave. The next two are scalar and longitudinal-vector distortions, respectively. The scalar
mode represents an isotropic modulation while the longitudinal-vector mode stretches and compresses the correlations along
ẑ. The two transverse-vector modes induce quadrupolar distortions in the xz and yz directions, respectively. right two: The
circular polarizations of the tensor mode (h+t) and vector mode (h+v).

Statistical isotropy requires that fp(k1,k2) be a function
only of k21, k22, and k1 · k2.

The parameter p labels the polarization state of the
new field and εpij(K) its polarization tensor, a symmetric
3×3 tensor. The most general such tensor can be decom-
posed into 6 orthogonal polarization states [12], which we
label s = {+,×, 0, z, x, y}, that satisfy εpijε

p′,ij = 2δpp′ .

These states can be taken to be two scalar modes ε0ij ∝ δij
and εzij ∝ KiKj−K2/3, two transverse-vector (“vector”)

modes εx,yij ∝ K(iwj) with Kiwi = 0, and two transverse
traceless modes (the “tensor” modes) ε+ and ε×.

If K is taken to be in the ẑ direction, then the + po-
larization of the tensor mode has ε+xx = −ε+yy = 1 with
all other components zero, and the × polarization has
ε×xy = ε×yx = 1 with all other components zero. These two
tensor modes are thus characterized by a cos 2φ or sin 2φ
dependence, for ε+ and ε×, respectively, on the azimuthal
angle about the K direction of the tensor mode. The first
two columns in Fig. 1 show the distortions induced to
an otherwise isotropic two-point correlation function by
correlation of the density field with a + and × polarized
tensor mode. Shown there is a quadrupolar distortion in
the x-y plane that then oscillates in phase as we move
along the direction ẑ of the Fourier mode.

The first scalar mode has ε0ij =
√

2/3δij and as shown
in Fig. 1 represents an isotropic modulation of the cor-
relation function as we move along the direction ẑ of the
Fourier wavevector. The other scalar (or longitudinal-

vector) mode has εzij ∝ diag(−1,−1, 2)/
√

3 which repre-
sents a stretching and compression along ẑ. Both scalar
modes represent local distortions of the two-point func-
tion that have azimuthal symmetry about K.

Finally, the two transverse-vector modes have εxxz =
εxzx = 1 with all other components zero, and εyyz = εyzy =
1 with all other components zero. These two modes rep-
resent stretching in the ±xz and ±yz directions, respec-
tively, as shown in the last hx and hy columns in Fig. 1.
These two transverse-vector modes have cosφ and sinφ
dependences on the azimuthal angle φ about the direc-
tion of the Fourier mode.

The specific functional form of fp(k1,k2) depends on
the coupling of the new field (scalar, vector, or tensor) to
the inflaton. Statistical isotropy requires, though, that
fp(k1,k2) will be the same for the two tensor polariza-
tions and the same for the two vector polarizations; i.e.,
f×(k1,k2) = f+(k1,k2), and fx(k1,k2) = fy(k1,k2).
The same is not necessarily true for the scalar pertur-
bations. In fact, the polar-angle dependence that distin-
guishes the 0 and z polarizations can be absorbed into
f0(k1,k2) and fz(k1,k2). Thus, in practice, one can de-
scribe the most general scalar distortions to clustering in
terms of either the 0 or the z polarization by appropriate
definition of f0(k1,k2) or fz(k1,k2). (This is the mixing
between a scalar mode and a longitudinal-vector mode.)
We thus below merge these two polarizations into a single
polarization which we label with a subscript s.
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Suppose now that a correlation such as that in Eq. (1),
for either a scalar, vector, or tensor distortion, is hypoth-
esized. How would we go about measuring it? According
to Eq. (1), each pair δ(k1) and δ(k2) of density modes
with K = k1 + k2 (note that we have re-defined the sign
of K here) provides an estimator,

ĥp(K) = δ(k1)δ(k2)
[
fp(k1,k2)εpijk

i
1k
j
2

]−1
, (2)

for the Fourier-polarization amplitude hp(K). Since〈
|δ(k)|2

〉
= V P tot(k), where P tot(k) = P (k) + P n(k) is

the measured matter power spectrum, including the sig-
nal P (k) and noise P n(k), the variance of this estimator
is

2V P tot(k1)P tot(k2)
∣∣∣fp(k1,k2)εpijk

i
1k
j
2

∣∣∣−2 . (3)

The minimum-variance estimator for hp(K) is then ob-
tained by summing over all these individual (k1,k2) pairs
with inverse-variance weighting:

ĥp(K) =Pnp (K)
∑
k

f∗p (k,K− k)εpijk
i(K − k)j

2V P tot(k)P tot(|K− k|)

× δ(k)δ(K− k), (4)

where the noise power spectrum,

Pnp (K) =

[∑
k

∣∣fp(k,K− k)εpijk
i(K − k)j

∣∣2
2V P tot(k)P tot(|K− k|)

]−1
, (5)

is the variance with which ĥp(K) is measured. This
Pnp (K) is a function only of the magnitude K (not its
orientation) as a consequence of statistical isotropy, and
for the same reason, P×(K) = P+(K) ≡ Pt(K), for
both the signal and noise power spectra, and similarly
Px(K) = Py(K) ≡ Pv(K).

In general, the amplitudes hp(K) arise as realizations

of random fields with power spectra Ph(K) = AhP
f
h (K),

for h = {s, v, t}, which we write in terms of amplitudes

Ah and fiducial power spectra P fh (K). We now proceed
to write the optimal estimator for the amplitudes Ah.

Each Fourier-mode estimator ĥp(K) for the appropri-
ate polarizations (s for scalar, x and y for vector, and +
and × for tensor) provides an estimator,

ÂK,p
h =

[
P fh (K)

]−1 [
V −1

∣∣∣ĥp(K)
∣∣∣2 − Pnp (K)

]
, (6)

for the appropriate power-spectrum amplitude. Here we
have subtracted out the noise contribution to unbias the
estimator. If ĥp(K) is estimated from a large number
of δ(k1)-δ(k2) pairs, then it is close to being a Gaus-
sian variable. If so, then the variance of the estimator in
Eq. (6) is, under the null hypothesis,

2
[
P fh (K)

]−2 [
Pnp (K)

]2
. (7)

Adding the estimators from each Fourier mode with
inverse-variance weighting leads us to the optimal esti-
mator,

Âh = σ2
h

∑
K,p

[
P fh (K)

]2
2
[
Pnp (K)

]2 (V −1 ∣∣∣ĥp(K)
∣∣∣2 − Pnp (K)

)
,

(8)
where

σ−2h =
∑
K,p

[
P fh (K)

]2
/2
[
Pnp (K)

]2
. (9)

For the vector-power-spectrum amplitude Âv we sum
over p = {x, y} and for the tensor-power-spectrum am-

plitude Ât over p = {+,×}. Following the discussion

above, the sum on p is only for p = s for Âs.

The estimator in Eq. (8), along with the quadratic
minimum-variance estimator in Eq. (4), demonstrates
that the correlation of density perturbations with an un-
seen scalar, vector, or tensor perturbation appears in the
density field as a nontrivial four-point correlation func-
tion, or trispectrum. The dependence of the trispectrum
on the azimuthal angle about the diagonal of the Fourier-
space quadrilateral distinguishes the shape dependences
of the trispectra for scalar, vector, and tensor modes. To
specify this trispectrum more precisely, though, requires
inclusion of the additional contribution induced by modes
K that involve the other two diagonals of the quadrilat-
eral. Likewise, if a signal is detected—i.e., if the null-
hypothesis estimators above are found to depart at > 3σ
from the null hypothesis—then the optimal measurement
and characterization of the trispectrum requires modifi-
cation of the null-hypothesis estimators in a manner anal-
ogous to weak-lensing estimators [13].

We now evaluate the smallest amplitudes As, Av, and
At that can be detected with a given survey. To do
so, we take for our fiducial models nearly scale-invariant
spectra Ph(K) = AhK

nh−3, with |nh| � 1. We more-
over take the density-density–new-field bispectrum to be
the squeezed limit of the density-density-tensor bispec-
trum form found in Ref. [7] for single-field slow-roll infla-
tion, and assume for simplicity, the same fp(k1,k2) for
scalar and vector modes. We then find that the inte-
grand (using

∑
k → V

∫
d3k/(2π)3) in Eq. (5) is dom-

inated by the squeezed limit (K � k1 ' k2) where
fp(k1,k2) ' −(3/2)P (k1)/k21. We then approximate
P (k)/P tot(k) ' 1 for k < kmax, where kmax is the largest
wavenumber for which the power spectrum can be mea-
sured with high signal to noise, and P (k)/P tot(k) ' 0
for k > kmax. This then yields a noise power spectrum
Pn{v,t}(K) ' 20π2/k3max and Pns (K) ' 8π2/k3max. Evalu-

ating the integral in Eq. (9), we find the scalar, vector,
and tensor amplitudes detectable at & 3σ (for nh ' 0)
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FIG. 2: The smallest scalar, vector, and tensor power-
sepctrum amplitudes As, Av and At, respectively, detectable
at the 3σ level as a function of the maximum wavenumber
kmax of the survey. Shown are results for survey volumes
of 10 [Gpc/h]3 and 200 [Gpc/h]3, or minimum wavenumbers
kmin ' 0.001 [h/Mpc] and kmin ' 0.003 [h/Mpc], respectively.

to be

3σh ' 30π
√

3πCh

(
kmax

kmin

)−3
' 288Ch

(
kmax

kmin

)−3
,

(10)
where C{t,v} = 1 and Cs = 2/5. The smallest detectable
power-spectra amplitudes are thus inversely proportional
to the number of Fourier modes in the survey. We show
the projected detection sensitivities for surveys with vol-
umes of 200 [Gpc/h]3 and 10 [Gpc/h]3 in Fig. 2.

For example, if the new field is a scalar field that gives
rise to a local-model trispectrum of amplitude τNL [14],
we may identify As = 2.76 × 10−7 τNL [15], suggest-
ing a sensitivity, to τNL ' 345, from a galaxy survey
of volume V = 100 [Gpc/h]3 with kmax = 0.1[h/Mpc].
As another example, if there are tensor distortions to
the two-point correlation function induced by primordial
gravitational waves, then a sensitivity to a tensor ampli-
tude At ' 2× 10−9 near the current upper limit requires
kmax/kmin & 5200. Such a dynamic range is probably
beyond the reach of galaxy surveys, but it may be within
reach of the 21-cm probes of neutral hydrogen during the
dark ages envisioned in Refs. [10, 17]. Of course, the sig-
nal could be larger if the inflaton is correlated with a
scalar, vector, or tensor field that leaves no other trace.

Finally, several new tests for parity-violating early-
Universe physics can be developed from simple modifi-
cation of the estimators above. To do so, we substitute
the x and y polarizations, and + and × polarizations,
with circular-polarization tensors ε±vij = εxij ± iεyij and

ε±tij = ε+ij ± iε
×
ij . The two right-most patterns shown in

Fig. 1 are the circular polarization patterns for tensor
and vector modes. It may then be tested whether the

power spectra for right- and left-circular polarizations are
equal. For example, chiral-gravity models [18] may pre-
dict such parity-violating signatures in primordial gravi-
tational waves, and similar models with parity-violating
vector perturbations are easily imaginable.

Of course, “real-world” effects like redshift-space dis-
tortions, biasing, and nonlinear evolution, must be taken
into account before the estimators written above can be
implemented, but there are well-developed techniques to
deal with these issues [16].

In summary, the most general two-point correlation
function for the cosmological mass distribution can be
decomposed into scalar, vector, and tensor distortions.
We have presented straightforward recipes for measuring
these distortions. Such effects may arise if the inflaton
is coupled to some new field during inflation. We have
avoided discussion of specific models, but the introduc-
tion of new fields during inflation is quite generic to infla-
tionary models. We therefore advocate measurement of
these correlations with galaxy surveys, and in the future
with 21-cm surveys, as a simple and general probe of new
inflationary physics.

This work was supported by DoE DE-FG03-92-
ER40701 and NASA NNX12AE86G.
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