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Motivated by recent experiments on vanadium spinels, AV2O4, that show an increasing degree
of electronic delocalization for smaller cation sizes, we study the evolution of orbital ordering (OO)
between the strong and intermediate-coupling regimes of a multi-orbital Hubbard Hamiltonian. The
underlying magnetic ordering of the Mott insulating state leads to a rapid suppression of OO due
to enhanced charge fluctuations along ferromagnetic bonds. Orbital double-occupancy is rather low
at the transition point indicating that the system is in the crossover region between strong and
intermediate-coupling regimes when the orbital degrees of freedom become disordered.
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The steady interest in frustrated magnets with degen-
erate orbitals is driven by the continuous discovery of
unusual magnetic and orbital orderings resulting from an
intricate interplay between frustration, lattice distortions
and electron correlations. A case in point is the family
of vanadium spinels, AV2O4 (A = Cd, Mg or Zn), whose
magnetic V3+ ions reside on a pyrochlore lattice and con-
tain two electrons in their t2g 3d-orbitals [1–5]. What
makes this family particularly attractive is the possibil-
ity of tuning the ratio between the electronic hopping, t,
and the intra-orbital Coulomb repulsion, U , by changing
the cation size at A sublattice [6].

By using a strong-coupling approach, Tsunetsugu and
Motome found an antiferro-orbital (AFO) order con-
sisting of alternating dzx and dyz orbitals along both
[1, 0,±1] (zx) and[0, 1,±1] (yz) directions [7]. However,
AFO is incompatible with the crystal symmetry I41/amd
extracted from neutron scattering (NS) and x-ray diffrac-
tion experiments [1–3]. Tchernyshyov [8] proposed that
AFO is suppressed by a strong spin-orbit (SO) interac-
tion [8–10]. Although there is no reliable data on the
SO coupling for V3+ ions, free ion measurements [11]
and ab initio calculations [12] indicate that it may be
comparable to the exchange energy. However, recent NS
measurements on MgV2O4 [3] detected a small spin gap
and highly dispersive magnetic excitations that are at
odds with strong SO coupling [13]. More recent exper-
imental studies of the AV2O4 family show that none of
these compounds satisfy the phenomenological Bloch’s
equation [14] ∂ lnTN/∂ lnV ' 3.3, that must hold in the
strong-coupling limit t/U � 1 [6] (TN and V are Néel
temperature and volume). Moreover, the Néel tempera-
ture of ZnV2O4 decreases with pressure and transport
measurements reveal that MgV2O4 and ZnV2O4 have
small charge gaps [15]. These measurements clearly indi-
cate that a comprehensive study of the spinel vanadates
requires an approach that can interpolate between the
strong and intermediate-coupling regimes.

In this Letter we demonstrate that the larger charge
fluctuations of the intermediate-coupling regime play a
crucial role for suppressing OO in MgV2O4 and ZnV2O4.

The observed magnetic ordering breaks the equivalency
between bonds and the strong Hund’s coupling results
in a lower energy barrier for ferromagnetic (FM) bonds.
Since the FM bonds form zig-zag chains spiraling along
the z direction (see Fig. 1), charge fluctuations become
stronger along these chains. We argue that it is essential
to keep double occupied states in the low-energy effec-
tive theory to account for the lower energy barrier of FM
bonds. In fact, we show that double occupied states of
isolated zig-zag chains are domain walls of a 1D quantum
Ising model. These domain walls are confined in the or-
bitally ordered phase. As t/U increases, the zig-zag chain
undergoes a quantum phase transition to a para-orbital
(PO) [16] state via proliferation of domain walls. We find
that this transition takes place at the crossover between
the intermediate and strong-coupling regimes. This phe-
nomenon cannot be captured by a strong-coupling ap-
proach because double-occupied states are projected out
from the low-energy Hilbert space.

We first review experimental results on vanadium
spinels. A structural transition occurs at a temperature
Ts ≈ 95K for A = Cd [4, 5], Ts ≈ 51K for A = Zn [2],
and Ts ≈ 65K for A = Mg [3], which lowers the crys-
tal symmetry from cubic Fd3̄m to tetragonal I41/amd
and leads to uniform flattening of VO6 octahedra with
c < a = b . This distortion leads to a partial ferro-
orbital (FO) ordering in which the lower-energy dxy or-
bital is occupied at every site, while the second electron
can occupy either the dzx or dyz orbitals. Antiferromag-
netic correlations develop below Ts along chains parallel
to [1,±1, 0] (xy) directions. However, 3D magnetic or-
dering only sets in below a lower Neel temperature due
to frustration in the inter-chain coupling. The ordering
wave-vector is q = 2π(0, 0, 1) and the corresponding spin
pattern is ↑↑↓↓ along chains parallel to the yz or zx direc-
tions. This ordering leads to zig-zag FM chains spiraling
about the z-axis (Fig. 1).

The Model. We start by considering a low-energy t2g
Hamiltonian H = Hcf +HU +Ht +Hso. The first term,
Hcf = −∆

∑
j nj xy, describes the crystal field splitting

due to the Jahn-Teller distortion at T < Ts, where nj xy
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FIG. 1: (Color online) Pyrochlore lattice of V3+ ions in
AV2O4. The solid diagonal lines are FM bonds along zx and
yz directions. These “strong” bonds form zig-zag chains de-
scribed by H̄. The dashed lines are the “weak” AFM bonds
that introduce inter-chain orbital coupling. The arrows in-
dicate the spin ordering favoured by a combination of the
intra-chain FM coupling and inter-chain AFM coupling in-
duced by bonds oriented along the xy direction. The letters
x (for zx) and y (for yz) indicate the OO that is stable deep
inside the Mott regime [7].

is the electron number for the dxy orbital of site j. We
also assume a value of ∆ > 0 that is large enough to
localize one electron in the dxy orbital. HU contains the
terms originated from the Coulomb repulsion between
electrons in the same ion. When restricted to the nj xy =
1 subspace, HU reads

HU =
∑
j,µ

[−2JSjµ · Sj xy + Unjµ↑njµ↓]

+(U − 2J)
∑
j,µ 6=ν

njµ↑njν↓ +
U − 3J

2

∑
j,α,µ 6=ν

njµαnjνα

+J
∑
j,µ 6=ν

[
d†jµ↑d

†
jµ↓djν↓djν↑ − d

†
jµ↑djµ↓d

†
jν↓djν↑

]
.

(1)

Here U denotes the Coulomb repulsion between electrons
occupying the same orbital and J is the Hund’s coupling
constant [18]. µ, ν = {zx, yz} are orbital indices, while

α, β =↑, ↓ are spin indices. Finally, njµα = d†jµαdjµα,

njµ =
∑
α njµα, and Sjµ = 1

2

∑
α,β d

†
jµασαβdjµβ , where

σ = (σx, σy, σz) is a vector of Pauli matricies. The ki-
netic energy terms are

Ht =
∑
jj′

∑
µ,ν,α

tµνjj′(d
†
jµα dj′να + H.c.) (2)

We assume that the transfer matrix is diagonal in the t2g
manifold and that the hopping integral is dominated by
the ddσ contribution: tµνjj′ = tµµjj′δµ,ν .

Finally, the effective SO contribution Hso is obtained
by projecting the original SO interaction, λL ·S, onto the

doublet of {dzx, dyz} orbitals [19]:

Hso = iλ
∑
jα

σzαα

(
d†j zxαdj yz α − d

†
j yz αdj zxα

)
. (3)

The SO coupling also contains terms, like λd†j xy↑dj µ ↓,
which mix the dxy with dzx or dyz orbitals. Since these
terms are of order λ/∆, they will be neglected in the
following discussion.
A single helical chain (λ = 0 limit). We now consider

a single helical chain that propagates along z-direction
with alternating zx and yz bonds. (We use the short no-
tation “µ-bond” for bonds oriented along the µ direction,
where µ = {xy, yz, zx}.) The hopping matrix elements
along each helical chain are tzx,zxj,j+1 = t and tyz,yzj,j+1 = 0 for

zx-bonds, tyz,yzj,j+1 = t and tzx,zxj,j+1 = 0 for yz-bonds, while
there is no hopping between dxy orbitals. The resulting
single-chain hopping Hamiltonian is

t
∑

j∈odd, α

(
d†j+1 zxαdj zxα + d†j−1 yzαdj yz α + H.c.

)
. (4)

The total charge in each pair of orbitals connected by a
finite hopping amplitude is conserved for λ = 0. This lo-
cal U(1) invariance of H(λ = 0) makes the model quasi-
exactly solvable. For realistic Hamiltonian parameters,
the ground state of H(λ = 0) is always in the fully po-
larized subspace S with exactly one electron per bond.
The projection of H(λ = 0) onto this invariant subspace
is mapped into a quantum Ising model (QIM):

PSH(λ = 0)PS = −J
∑
j

[
τzj,j+1τ

z
j+1,j+2 − gτxj,j+1

]
, (5)

up to a constant C = Ns(U−J)/4. Here J = (U−3J)/4,
g = 4t/(U − 3J), and Ns is the total number of V3+ ions
in the chain. The Ising variable τzj,j+1 is equal to 1 if an
electron occupies the right site (j + 1) of the bond and
−1 if it occupies the left site (j).

The operator that is associated with the local orbital
order parameter, nj zx − nj yz, has the following expres-
sion in terms of the Ising variables:

nj zx − nj yz = ±
τzj±1,j±1+1 + τzj,j+1

2
, (6)

where the + (−) sign holds for odd (even) values of j.
The 1D QIM is exactly solvable and the ground state has
FM ordering for U − 3J ≥ 4t. The corresponding order
parameter is: 〈τzk=0〉 =

∑
j〈τzj,j+1〉. According to Eq. (6),

FM ordering of the Ising variables corresponds to AFO
ordering of the original variables:

Oπ =
1

L

∑
j

eiπj〈nj zx − nj yz〉 = −〈τzk=0〉, (7)

where L is the number of sites in the helical chain. There-
fore, the quantum phase transition between the FM and
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FIG. 2: (Color online) (a) Mapping between Hλ=0 and the
QIM. The even and odd sublattices are indicated with blue
and red circles respectively. (b) and (c) show the projections
of the pyrochlore lattice and the helicoid Ising chains (solid
lines) on the xy and yz planes, respectively.

paramagnetic (PM) states of the Ising variables corre-
sponds to AFO-PO transition in terms of the original
variables.

The quantum critical point (QCP) occurs at t = tc =
(U − 3J)/4 or |g| = 1. The exact value of the nearest-
neighbor correlator at the QCP is 〈τzj,j+1τ

z
j+1,j+2〉c =

2/π, which implies a rather low probability of double-
occupancy: 〈nj zxnj yz〉c = 1

4

(
1− 〈τzj,j+1τ

z
j+1,j+2〉c

)
'

0.09. This means that the transition to the PO state
occurs far from the covalent regime and the inter-chain
orbital coupling can be treated as a perturbation.

Coupled Chains. Here we will assume that the effec-
tive AFM coupling between chains stabilizes the mag-
netically ordered state shown in Fig.1. This assumption
is supported by unbiased numerical simulations of the
three-band Hubbard model that will be presented else-
where [20]. In addition, this magnetic ordering is stable
near the itinerant [21] and strong-coupling limits [7] indi-
cating that it remains stable over the whole Mott phase.
Since charge fluctuations are weaker across AFM bonds
(the barrier is U instead of U − 3J), the coupling be-
tween neighboring helical Ising chains [Fig. 2(c)] will be
approximated by using a Kugel-Khomskii Hamiltonian
[7, 9, 17]. There are two contributions. The first contri-
bution comes from exchange between electrons localized
in the dxy orbitals and leads to a pure AFM spin cou-
pling:

Hspin = JS
∑
(ij)

Si · Sj , (8)

where JS = t2

U
1+η
1+2η is the spin exchange constant,

η = J/U , (ij) denotes an ±xy-bond which connects
two sites belonging to nearest-neighbor Ising chains, and
Sj =

∑
γ Sjγ . The above AFM coupling between helical

chains is unfrustrated and leads to the q = 2π(001) 3D
magnetic order depicted in Fig. 1.

The second contribution comes from orbital exchange
through the antiferromagnetic zx and yz bonds (dashed
bonds in Fig. 1) connecting nearest-neighbor Ising chains.
The small probability of double occupancy induced by
inter-chain hopping processes justifies our perturbative
treatment of these terms. The resulting inter-chain or-
bital Hamiltonian is

Horb =
∑
〈ij〉

K1niµnjµ +K2 [niµ(1− njµ) + (1− niµ)njµ] , (9)

where µ = zx (yz) when 〈ij〉 is a zx (yz)-bond, K1 =

−2 t
2

U
1+η
1+2η and K2 = − t

2

U
1−2η
1−3η denote the FO and AFO

couplings.
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FIG. 3: (Color online) (a) Phase diagram of the three-
dimensional quantum Ising model Eq. (10) for η = 0.229. (b)
T = 0 (λ, t) phase diagram of the single helical chain Hamil-
tonian H obtained with DMRG applied to chains of 48 unit
cells. (c) Square of the staggered orbital order parameter as
a function of t.

A 3D effective Ising Hamiltonian can be easily obtained
from Eqs.(5) and (9). The intra-chain term is given by
Eq.(5), while the inter-chain coupling is obtained by ex-
pressing the orbital occupation operators of Eq. (9) in
terms of the Ising variables njµ = (1 ± τzj,j+1)/2. How-
ever, we should recall that the Ising operators are bond
variables defined on a dual lattice (see Fig. 2(a)). There-
fore, we introduce the bond coordinates r = (m,n, j) to
define the full dual lattice, including the zx and yz-bonds
connecting different helical chains. The last coordinate
j denotes the position of the bond on its helical chain,
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while m and n correspond to the (x, y) chain coordinates.
(See Fig. 2.) The resulting quantum Ising Hamiltonian
is

Heff = −U − 3J

4

∑
r

(
τzr+ẑ τ

z
r − g τxr

)
(10)

−η t
2

U

∑
r

(
τzr+er−ẑ τ

z
r+ẑ + τzr+er+ẑ τ

z
r−ẑ
)
,

where er = (±1, 0, 0) and (0,±1, 0) are vectors connect-
ing the site r to its neighbors. The inter-chain orbital
coupling is much weaker than the intra-chain coupling
and both are FM. In the large U/t limit ( deep inside the
MI phase), the FM coupling between Ising variables leads
to the AFO order along dashed zx or yz bonds connect-
ing different helical chains (see Fig. 1). This AFO align-
ment is in contradiction with naive expectations based on
the a single-bond analysis. |K1| > |K2| for finite η and
the orbital superexchange favors a FO configuration the
dashed zx- and yz-bonds. However, the state with FO
alignment along dashed bonds is frustrated because half
of those bonds would contain pairs of occupied orbitals
that are not connected by a finite hopping amplitude. In
contrast, the energy gain is the same for every bond of
the AFO order shown in Fig. 1.

Fig. 3(a) shows the thermodynamic phase diagram of
Heff (10) obtained from quantum Monte Carlo (QMC)
simulations on lattices containing up to 8×8×40 unit cells
(20480 sites). As in the 1D case, the transition between
OO and PO occurs in the crossover region between the
strong and intermediate-coupling regimes. As expected,
the ordering temperature, TOO, increases with U .

Finite SO coupling. To compare two different mech-
anisms for suppression of the AFO ordering, we return
to the original Hamiltonian H on a single helical chain
and quantify the effect of a finite SO interaction. We ap-
ply the density matrix renormalization group (DMRG)
method to a chain of 16 sites and verify that the ground
state of H is still a fully polarized ferromagnet for λ ≤
0.05(U−3J) in the entire regime parameters that we have
been considering here. We project H into the fully po-
larized subspace S and split each site of the helical chain
into two single-orbital sites. Then we arrange the orbitals
in a one-dimensional array dj zx, dj yz, dj+1 yz, dj+1 zx, ...
and identify each orbital with an effective site l. The
result is an effective spinless fermion model with alter-
nating hopping and nearest-neighbor repulsion:

PSHPS=
∑
l

t(c†2l−1c2l + H.c.) + (U − 3J)n2ln2l+1

+ iλ(c†2lc2l+1 − c
†
2l+1c2l). (11)

The ground state of PSHPS is obtained by applying
DMRG to a chain of 48 sites. The resulting (λ, t) quan-
tum phase diagram and the AFO order parameterOπ [see
Eq. (7)] are presented in Fig. 3(b) and (c), respectively.
It is clear that SO coupling and charge fluctuations ef-
fectively suppress the AFO order in different parts of the

phase diagram. SO coupling λ is very effective for sup-
pressing the AFO deep inside the MI (large U) regime.
A small SO coupling of about 6% of the Coulomb energy
drives the system into the PO state because λ competes
against a super-exchange energy scale of order t2/U that
stabilizes the AFO order [8]. On the other hand, SO cou-
pling has little effect in the vicinity of the QCP because
the competing energy scale that determines the strength
of the charge fluctuations is of order t. We should empha-
size that although Fig. 3 includes a region deep inside the
MI regime, our approach is quantitatively correct only
near the QCP that separates the OO and PO phases.

In summary, our results offer a new perspective for
understanding the electronic properties of the vanadium
spinels AV2O4. While CdV2O4 seems to be not too far
from the localized or strong-coupling regime, it is not
clear if the magnetic ordering is accompanied by OO.
Different experimental probes indicate that MgV2O4 and
ZnV2O4 are well inside the intermediate-coupling regime
[6, 15, 22]. MgV2O4 and ZnV2O4 exhibit the same type
of ↑↑↓↓ magnetic ordering and there is no evidence of
OO down to the lowest accessible temperatures. Ac-
cording to our calculations, the SO interaction is very
effective for suppressing OO in the localized regime rel-
evant for CdV2O4 [8]. However, the lack of OO in the
intermediate-coupling regime relevant for MgV2O4 and
ZnV2O4 is mainly driven by charge fluctuations and ba-
sically insensitive to the magnitude of the SO interaction.
While SO still contributes to the rather large suppression
of the V3+ moment in the three compounds (1.19µB in
CdV2O4, 0.63 µB in ZnV2O4 and 0.47µB in MgV2O4),
we attribute the significantly smaller values observed in
ZnV2O4 and MgV2O4 to the same charge fluctuations
that suppress the OO.

ZnV2O4 and MgV2O4 have very similar lattice param-
eters [6]. The estimated value of t for the cubic phase of
ZnV2O4 with lattice parameter 2.97 Å is t ' 0.35 eV [23].
According to our results, the OO should disappear com-
pletely for U − 3J & 1.2 eV. If we assume that U ' 3.5
eV [15] and J ' 0.8 eV [7, 10], OO should be completely
suppressed in agreement with experimental observations.
We note that the PO phase found for t ≥ 0.3(U − 3J)
is similar to the state obtained from an ab initio itin-
erant approach [15]. However, the bond order parame-
ter associated with the ↑↑↓↓ magnetic ordering is much
weaker close to the QCP than in the itinerant regime. In
other words, the lattice distortion induced by the bond
ordering (FM bonds become shorter than the AFM ones)
near the QCP should be much smaller than the value re-
ported in Ref. [15]. This could explain why recent NS
measurements have not observed the strong dimerization
predicted in Ref. [15]. This may also be the reason why ab
initio calculations overestimate the electric polarization
induced by the same bond ordering in CdV2O4 [5]. We
believe that much better quantitative agreement can be
obtained from an intermediate-coupling treatment, like
the one presented here, that incorporates the coupling to
the lattice degrees of freedom.
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