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Quantum strings in quantum spin ice

Yuan Wan and Oleg Tchernyshyov
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

We study quantum spin ice in an external magnetic field applied along a 〈100〉 direction. When
quantum spin fluctuations are weak, elementary excitations are quantum strings with monopoles at
their ends manifested as multiple spin-wave branches in the dynamical structure factor. Strong quan-
tum fluctuations make the string tension negative and give rise to the deconfinement of monopoles.
We discuss our results in the light of recent neutron scattering experiments in Yb2Ti2O7.

PACS numbers: 75.30.-m, 75.40.Gb, 75.40.Mg

The quest for novel quantum phases and elementary
excitations is one of the central themes in condensed-
matter physics. The notion of an elementary excitation is
conventionally associated with a point-like object, as the
term quasiparticle implies. A natural question is whether
elementary excitations in quantum materials could re-
semble strings, rather than particles. String excitations
were recently found in spin ice Dy2Ti2O7 [1, 2], a frus-
trated ferromagnet with fractionalized excitations known
as magnetic monopoles [3, 4]. In an applied magnetic
field, excitations are strings of misaligned spins connect-
ing two monopoles of opposite charge.

Conventional spin ice is a classical magnet with Ising
spins [5]. Therefore, magnetic monopoles and strings in
it are classical objects whose dynamics are due to ther-
mal fluctuations. In this letter, we propose that string
excitations with inherent quantum dynamics may exist
in quantum spin ice, a new family of spin-ice materi-
als exemplified by Tb2Ti2O7 and Yb2Ti2O7 [6][7]. In
these compounds, spins exhibit substantial quantum fluc-
tuations. We demonstrate that, in a certain regime of
coupling constants, elementary excitations of quantum
spin ice are strings with quantum dynamics. The calcu-
lated dynamical structure factor S(ω,k) reveals multiple
branches of excitations that correspond, loosely speak-
ing, to strings of different lengths. As the applied field
increases, these branches gradually separate and the low-
est one evolves into a magnon. We connect these findings
to recent experiments on neutron scattering in Yb2Ti2O7

[8, 9].
We begin with a toy model of quantum spin ice on

the two-dimensional checkerboard lattice, Fig. 1. The
point of departure is classical spin ice, in which spins have
projections Sz

i = ±1/2 on local directions ẑi shown in
Fig. 1a. Magnetic charge on a crossed plaquette (planar
tetrahedron) is defined asQ� = −ε�

∑
i∈� S

z
i , with ε� =

±1 for sublattice A (B). The ground states of the classical
spin-ice Hamiltonian,

H0 =
∑
�

∑
〈ij〉∈�

JSz
i S

z
j =

∑
�

JQ2
�/2 + const, (1)

obey the Bernal-Fowler rule, Q� = 0, on every tetrahe-
dron [5]. Next we apply a weak magnetic field in the ac

FIG. 1: (a) The checkerboard lattice. A and B denote two
symmetrically inequivalent planar tetrahedra, and arrows the
local ẑi directions. (b) The fully-polarized state when the
field is applied in the c direction. Arrows denote the spin
orientations. (c) A string of flipped spins (light green) binding
a Q = +1 monopole (red solid circle) and a Q = −1 one (open
blue circle). (d, e, f) −ImSaa(ω,k) for kb = 0. B/h = 0.5,
1.5, and 4.5 respectively.

plane. In the local frames, the perturbation reads

H1 = −
∑
i

(hSx
i +BηiS

z
i ). (2)

Here we chose the local y-axes to be orthogonal to the
field and introduced cosines ηi ≡ ĉ · ẑi = (−1)ci/

√
2. The

Zeeman term (2) has two effects. Its longitudinal com-
ponent B breaks the degeneracy of ice states and favors
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FIG. 2: Definition of Xc operators. The operator X2 changes
the orientation of the string segment with c = 2 from l to r in
state (a) and results in a new state (b). The operators X−1,5

fall outside the range of the string and act trivially on (a).

a fully magnetized state, Fig. 1b. The transverse compo-
nent h induces quantum fluctuations of spins. We treat
B and h as independent parameters in the toy model.

Flipping a single spin in the fully magnetized state cre-
ates two monopoles with Q = ±1, which can be pulled
further apart. The process creates a string of spins
aligned against the field and connecting the monopoles,
Fig. 1c. For h = 0, the energy of a string with n segments
is J+Bn/

√
2. For weak fields, the Hilbert space thus sep-

arates into near-degenerate subspaces with a fixed num-
ber of strings. The transverse part of the Zeeman term
(2) mixes states in the same subspace through quantum
tunneling, inducing quantum motion of strings. We use
degenerate perturbation theory in the subspace with a
single string to construct an effective theory of its quan-
tum dynamics.

The shape of a string is specified by its segments
{s1, s2 . . . sn}, or {si} for short, which take on the val-
ues r ≡ (0, 1, 1) and l ≡ (0,−1, 1) in the abc-frame.
The string thus propagates upwards in Fig. 1c from the
Q = +1 monopole at s+ to the Q = −1 monopole at s−.
Because of the constraint s− − s+ =

∑n
i=1 si, the state

of a string is fully specified by its shape and location of
one of the ends, |s+, {s}〉. We introduce a hybrid basis
with fixed shape {si}, c-coordinate of the monopole c+,
and the b-component of the total momentum kb:

|kb, c+, {si}〉 =
∑
b+

eikb(b++b−)/2|b+, c+, {si}〉. (3)

To the first order in h, the motion of a string involves
removing or adding a segment at one of the ends, with
an effective Hamiltonian

Heff |c+, {s1 . . . sn}〉 = (J + nB/
√

2)|c+, {s1 . . . sn}〉 − (h/2)eikbbn/2|c+, {s1 . . . sn−1}〉 − (h/2)e−ikbb1/2|c+ + 1, {s2 . . . sn}〉
− (h/2)

∑
sn+1

e−ikbbn+1/2|c+, {s1 . . . sn+1}〉 − (h/2)
∑
s0

eikbb0/2|c+ − 1, {s0 . . . sn}〉. (4)

Here bi stands for the b-component of the vector si. We
have omitted the momentum index to simplify the nota-
tion.

When kb = 0, diagonalization of Heff is simplified by
the presence of multiple reflection symmetries. Define
the parity operator Xc that switches between the l and r
orientations of the segment with coordinate c and keeps
all other segment variables si intact (Fig.2), e.g.

Xc|c+, . . . sc−c+ , l . . .〉 = |c+, . . . sc−c+ , r . . .〉. (5)

When Xc falls outside the range of the string, c+ < c <
c−, it acts on the vacuum state, which is symmetric, so we
set Xc|c+, {s}〉 = +|c+, {s}〉 in this case. It can be seen
that X2

c = 1 and [Xc, Xc′ ] = 0. Although Xc does not
preserve the coordinate of the other end of the string s−,
at kb = 0 its horizontal displacement makes no difference;
therefore, [Xc, Heff ] = 0. Thus, all kb = 0 eigenstates of
Heff can be classified by their parities under {Xc} and
Heff becomes block-diagonal.The most important states
have all even parities, Xc = +1. An all-even state of a

string of length n and longitudinal momentum kc is

|kc, n〉 = 2−n/2
∑
c+

∑
s1...sn

eikc(c++c−)/2|c+, {s1...sn}〉.

(6)
For them, the Hamiltonian (4) simplifies,

Heff |n〉 =

(
J +

nB√
2

)
|n〉 −

√
2h cos

kc
2

∑
m=n±1

|m〉. (7)

The above is equivalent to the one-dimensional prob-
lem of a particle on a lattice subject to a constant force
−B/

√
2 and a hard wall at n = 0. For B � h, we use

the continuum approximation to find the spectrum:

Ej(kc) = J−2
√

2

∣∣∣∣h cos
kc
2

∣∣∣∣+λj
∣∣∣∣∣
√

2

2
B2h cos

kc
2

∣∣∣∣∣
1/3

. (8)

Here λj are roots of the Airy function. When B � h,
the lowest eigenstate is a single misaligned spin with the
dispersion

E1(kc) = J +
B√

2
−
√

2h2

B
(1 + cos kc). (9)
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Likewise, Heff can be diagonalized in odd-parity sectors
[10].

Strings can be directly observed in neutron scatter-
ing experiments. A scattered neutron flips a spin in the
fully-polarized background, creating a string of length 1.
The intensity of scattering is proportional to the over-
lap between a length-1 string and a string eigenstate of
Heff squared. Fig. 1 shows the dynamical structure fac-
tor −ImSaa(ω,k) at several values of B/h for kb = 0.
For this direction of k, the spectral weight comes solely
from states with all-even parities, Xm = +1. For B . h,
the spectrum consists of overlapping bands, whereas for
B � h the bands separate and the spectrum becomes
dominated by the shortest string consisting of a single
flipped spin, in essence a magnon.

For general k, we used the Lanczos method to calcu-
late the spectrum numerically and found similar behav-
ior. Parities Xc are no longer good quantum numbers;
therefore, more bands appear in the spectrum.

The case of three-dimensional quantum spin ice, with
S = 1/2 spins on the pyrochlore lattice, proceeds along
similar lines. The most general exchange Hamiltonian is
written in local axes (Fig. 3a) as [11]

Hpyro =
∑
〈ij〉

JzzS
z
i S

z
j − Jz±[Sz

i (ζijS
+
j + ζ∗ijS

−
j ) + (i↔ j)]

−J±(S+
i S
−
j + h.c.)− J±±(ζ∗ijS

+
i S

+
j + h.c.) (10)

Here ζij = ζji are phase factors, and i and j labeling
spin sublattices 0 to 3. Specifically, ζ01 = ζ23 = −1,
ζ02 = ζ13 = exp(iπ/3), ζ03 = ζ12 = exp(−iπ/3), and
ζii = 0. The Jzz term describes classical spin ice, whereas
the three remaining terms create quantum fluctuations.

A magnetic field applied in the [001] direction adds the
Zeeman term −B

∑
i αiS

x
i +βiS

y
i +γiS

z
i , with the cosines

α0,3 = −α1,2 =
gxy

gz
√

6
, β0,3 = −β1,2 =

gxy

gz
√

2
,

γ0,3 = −γ1,2 =
1√
3
, (11)

where gxy and gz are the principal components of the g-
tensor. In what follows we assume that the spin-ice term
Jzz dominates and treat the rest of the terms as pertur-
bations. The z Zeeman term favors the fully-magnetized
state (Fig. 3b). Excitations are open strings connecting
a pair of monopoles with Q = ±1. Magnetic charge is
defined as usual, Q� ≡ −ε�

∑
i∈� S

c
i , where � stands for

a tetrahedron and ε� = ±1 for tetrahedra of sublattice
A (B).

The state of a string |s+, {s}〉 is again parametrized
by the location of its Q = +1 end s+ and by its shape
{s} ≡ {s1, s2 . . . sn}. String segments si have four pos-
sible orientations: b0 = (1, 1, 1)/4, b1 = (−1, 1, 1)/4,
b2 = (1,−1, 1)/4, and b3 = (−1,−1, 1)/4. A segment
with orientation b0 or b3 must be followed by a segment
with orientation b1 or b2, and vice versa.

FIG. 3: (a) A and B denote two inequivalent tetrahedra in
the pyrochlore lattice and 0 ∼ 3 four sublattices. The gray
and black arrows show the local x̂ and ẑ directions. The
abc vectors specify the local frame for one sublattice. (b)
The fully-polarized state when the field is applied in the c
direction. Arrows show the spin orientations. (c) A string of
flipped spins (light green) binding a Q = +1 monopole (red
solid circle) and a Q = −1 one (blue open circle) (d,e,f) The
neutron scattering spectra for the momentum transfer k ‖ B.
B/Jz± = 1,3, and 6 respectively.

The effective Hamiltonian in the subspace of a single
string is

Heff = −
√

3Jz±K1 − J±K2 − 2J±±K3 + V (12)

Kinetic terms K1 and K2 describe first and second-
neghbor hopping of the string ends, whereas K3 describes
the hopping of a string of length 1. V = J + nB/

√
3 for

a string of length n. The explicit form of Ki is given in
[10].

Fig. 3 shows the neutron scattering spectrum
−(ImSaa + ImSbb) calculated with the aid of Lanczos di-
agonalization, for momentum transfer k ‖ B [10]. We set
J± = J±± = 0.36Jz±, and gxy/gz = 2.4 as in Yb2Ti2O7

[8]. The spectral features resemble those of 2D strings
(Fig. 1). The branches gradually separate as the string
tension increases with B. When Jz± ∼ J± ∼ J±± �
B � Jzz, the monopole dynamics is dominated by the
x and y Zeeman terms whereas the string tension is pro-
vided by the z term.
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FIG. 4: Loop-flipping processes in (a,b) checkerboard lattice
|lr〉 ↔ |rl〉 and (c,d) pyrochlore lattice |b2b3b1〉 ↔ |b1b3b2〉.

To the first order in perturbations Jz± ,±,±±, trans-
verse fluctuations induce the motion of a string’s ends.
At higher-orders in these couplings, the string’s shape
can change as well. The process involves the simuta-
neous reversal of spins around a closed loop (minimal
length 4 in square ice and 6 in pyrochlore ice) [12, 13].
In square ice, a state | . . . lr . . .〉 turns into | . . . rl . . .〉 and
vice versa, Fig. 4. When the position of the monopole
and the anti-monopole are both fixed, these fluctuations
can be mapped onto a S = 1/2 XY chain [14], with spin
values τz = ±1/2 representing r and l segments, and the
Hamiltonian

Hfluc = V2D

n−1∑
i=1

(τ+
i τ
−
i+1 + H.c.), (13)

where V2D = O(h4/J3). Quantum fluctuations reduce
tension of the string to B/

√
2− 2|V2D|/π. When the ap-

plied field is below the critical strengthBc = 2
√

2|V2D|/π,
the energy cost for string excitations is negative and the
fully-polarized state becomes unstable. A similar tran-
sition occurs in the pyrochlore quantum spin ice, where
a string can be mapped onto an XY chain with second-
neighbor interactions only [Fig. 4(c) and (d)],

Hfluc = V3D

n−1∑
i=1

(τ+
2i−1τ

−
2i+1 + τ+

2iτ
−
2i+2 + H.c.). (14)

The string tension is reduced by 2|V3D|/π. When B is
below the critical value Bc = 2

√
3|V3D|/π, the polarized

state becomes unstable.
The fate of the ground state below Bc depends on the

dimensionality. On the one hand, the zero field ground
state of the pyrochlore spin ice in the perturbative regime
Jz±,±,±± � Jzz is a U(1) spin liquid with deconfined
monopoles[13]. Therefore, the transition at Bc could
be associated with deconfinement of monopoles. On the
other hand, given that the compact quantum electrody-
namics is always confined in 2D [15], the B = 0 ground

state of the 2D quantum spin ice is likely another con-
fined phase separated from the fully-polarized state by
the transition at Bc.

In the quantum spin-ice material Yb2Ti2O7, the cou-
plings associated with quantum spin fluctuations, viz.
Jz±, J±, and J±±, are comparable with the spin-ice term
Jzz [8]. Therefore, perturbative calculations don’t ap-
ply to it directly. Nonetheless, the physical picture is
expected to hold beyond the perturbative regime if the
material lies in the phase that is adiabatically connected
to the magnetized state. A recent experiment indicates
the ground state of Yb2Ti2O7 is a ferromagnet [9]. The
spontaneous magnetization in a 〈100〉 direction acts as a
“molecular field,” creating nonzero string tension even in
the absence of an external field. We expect that strings
in quantum spin ice can be detected by neutrons and
photons. It would be particularly interesting to observe
a continuous evolution of string excitations in an increas-
ing magnetic field applied along a 〈100〉 direction.
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