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We generalize domain-wall dynamics to the case of translationally non-invariant ferromagnetic nanowires.
The obtained equations of motion make the description of thedomain-wall propagation more realistic by ac-
counting for the variations along the wire, such as disorderor change in the wire shape. We show that the
effective equations of motion are very general and do not depend on the model details. As an example of their
use, we consider an hourglass-shaped nanostrip in detail. Atransverse domain wall is trapped in the middle and
has two stable magnetization directions. We study the switching between the two directions by short current
pulses. We obtain the exact time dependence of the current pulses required to switch the magnetization with the
minimal Ohmic losses per switching. Furthermore, we find howthe Ohmic losses per switching depend on the
switching time for the optimal current pulse. As a result, weshow that as a magnetic memory this nanodevice
may be105 times more energy efficient than the best modern devices.

PACS numbers: 75.78.Fg, 75.60.Ch, 85.75.-d

During last two decades there has been a significant
progress in describing magnetization and, in particular,
domain-wall (DW) dynamics in magnetic nanostructures [1–
35]. The interest to these studies has been inspired not only
by the fundamental physics questions but also by the potential
applications for the spintronic memory and logic nanodevices
[36–38]. However, recently this progress has been staggered
due to the inability to make perfect translationally invariant
nanowires from one side and the difficulty to apply the theo-
ries made for translationally invariant systems to successfully
describe some of the phenomena in the experimental systems
from the other side. There have been attempts to consider
analytically and numerically [27–31] the systems with rough
surfaces or other disorder but the general theory for transla-
tionally non-invariant magnetic systems is still lacking.

In this Letter we generalize current and field induced DW
dynamics to the case of translationally non-invariant ferro-
magnetic nanowires. This generalization makes the descrip-
tion of the DW motion more realistic by accounting for vari-
ations along the wire, such as disorder or change in the wire
shape. We show that the effective equations of DW motion
are very general and do not depend on the details of the model
Hamiltonian. These equations are the main theoretical result
of this Letter.

As an example of the application of this theory, we study
current-induced magnetization switching in a thin hourglass-
shaped nanostrip. We show that a transverse DW trapped in
the middle of a curved inward nanostrip can serve as a mag-
netic memory device, see Fig. 1. At zero current, the magne-
tization in the transverse DW can have either of the two equi-
librium directions in the plane of the nanostrip. We study the
switching between these two magnetization directions medi-
ated by short current pulses with the requirement that the DW
returns to the initial position after switching. The main en-
ergy loss during the switching is due to Ohmic heating of the
wire. The minimum energy required per switch depends on
the switching time. We obtain the exact time dependence of
the current pulses required to switch the magnetization in the

most efficient way (with the minimal Ohmic losses per switch-
ing for a given switching time). Furthermore, we find how the
Ohmic losses depend on the switching time for this optimal
current pulse.

The two equilibrium magnetization directions can serve as
”zero” and ”one” of a memory bit. We show that based on
this prototype, it is possible to design a nonvolatile memory
device with an extremely short writing time, which is only
limited by the spin-wave frequency. The energy required per
switch for such a nanodevice is much lower than that for the
state-of-the-art memory devices.

Equations of motion. We study the DW dynamics by em-
ploying the Landau-Lifshitz-Gilbert (LLG) equation with cur-
rent terms [19, 28]. In general, a nontrivial solution of the
static LLG equation,S0 × δH0/δS0 = 0, has a continuous
symmetry. It means that this solution can be parametrized by
an even-dimensional vectorξ such thatS0(z, ξ) is the solution
for any ξ in a continuous interval. Then the DW dynamics
due to a correction to HamiltonianH0 or an electric current
can be described by the time-dependent parameterξ(t). The
equations forξ(t) are called the effective equations of mo-
tion. Below we sketch the general derivation of such effective
equations.

To consider the dynamics we assume that there is a pertur-
bationh, such that the full LLG equation takes the form

Ṡ = S× δH0

δS
+ h, (1)

where the time is measured in units of the gyromagnetic ra-
tio γ0 = g|e|/(2mc) andS = M/M with M being the
saturation magnetization. We note thath is not only a cor-
rection to Hamiltonian and may also contain other contribu-
tions such as dissipation, adiabatic and nonadiabatic current
terms. We look for a solution of this equation in the form
S(z, t) = S0(z, ξ(t))+ s, where the dependenceξ(t) is weak
ands is small and orthogonal toS0 at each point.

For current-driven magnetization dynamics the current is
assumed to be uniform in the nanowire. The correctionh then
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FIG. 1. (color online) Hourglass-shaped nanostrip as a prototype of
a magnetic memory nanodevice.

can be written as a sum of two terms:

h = S0×
δHδ

δS0

+hα, hα = αS0×Ṡ0−j∂S0+βjS0×∂S0.

(2)
The first term is the correction to the Hamiltonian,Hδ, which
turns the zero modes into soft modes as well as couples the
magnetization to an external magnetic field. The second term,
hα, is due to dissipation and current terms. Hereα is the
Gilbert damping constant,j is an electric current in the units
of velocity, andβ is the non-adiabatic spin torque constant.

Taking the scalar product of Eq. (1) withS0(z)× ∂ξjS0(z)
and integrating over the space, one can find the following
equation for the collective coordinatesξi:

2ξ̇i = −ǫij∂ξjE − ǫij
∫

dz S0(z)× ∂ξjS0(z) · hα(z), (3)

whereE(ξ) = Hδ[S0(z, ξ)] is the energy of the domain wall
[39] as a function of the soft modesξ.

For thin nanowires, a DW is a rigid spin texture. Its slow
dynamics can be described in terms of only two collective co-
ordinates corresponding to zero modes of motion. These zero
modes are the DW positionz0 and its conjugate variable – the
tilt angleφ for the transverse DW. For the vortex DW,φ can
serve as the magnetization angle defining the transverse posi-
tion of the vortex in the wire [40]. Using the definition ofhα,
Eq. (2), and the fact thaṫS0 = −ż0∂zS0 + φ̇∂φS0 we obtain

hα = αφ̇S0×∂φS0−j∂zS0+(βj−αż0)S0×∂zS0−S0×H

(4)
Here we included uniform magnetic fieldH in hα by adding
the term−S0 ×H in (4).

Up to the leading order in small dissipation (α andβ) the
equations of motion become

ż0 = −1

2

∂E

∂φ
+ j, (5)

φ̇ =
1

2

∂E

∂z0
− αazz

2

∂E

∂φ
+H + (α − β)azzj. (6)

Here for simplicity we have takenH to be along the wire (in
the z direction) andazz = 1

2

∫

dz(∂zS0)
2. These equations

are rather universal and can also be applied to describe the dy-
namics of vortex domain walls [41] in terms of two collective
coordinates associated with the DW degrees of freedom. The
1/2 in the first term on the right-hand side of Eqs. (5) and (6) is
a consequence of the Poisson bracket of the conjugated vari-
ablesz0 andφ. The most general derivation of these equations
is based on Poisson brackets and energy dissipation and will
be presented elsewhere [42].

Equations (5) and (6) do not depend on details of the micro-
scopic model. The only required input is the energy of astatic
DW as a function of two parametersz0 andφ. This function
can be either calculated by means of an analytical approxi-
mate model, micromagnetic simulations, or can be measured
experimentally for a given wire by a method analogous to the
one described in Ref. 39.

The energy of a static DW,E(z0, φ) = H[S0(z; z0, φ)],
whereS0 is a solution of a static LLG, in general depends on
both z0 andφ. The main dependence ofE on the angleφ
comes from the anisotropy in the transverse plane,E(φ) =
−κ cos(2φ) [43]. The dependence ofE on the DW position
z0 may come from different sources such as,z-dependence of
the wire shape, nonuniform concentration of impurities, wire
surface roughness, nanofabricated notches, etc. Equations (5)
and (6) can be used to study DW propagation in disordered
wires as well as DW depinning dynamics [31, 33] under the
action of time-dependent magnetic fields and currents.

TakingH = ∂z0E = 0 in Eq. (6) one recovers the DW dy-
namics equations for a translationally invariant nanowirewith
no magnetic field applied [25]. In this case the DW moves
with a constant velocityβj/α for small currentsj, whereas
above the critical currentjc = κα/|α−β| in addition to mov-
ing along the wire its angleφ rotates around the wire axis.

Memory device. As an example of the use of equations (5)
and (6) we consider a magnetic memory device based on a flat
hourglass-shaped nanostrip (shown in Fig. 1) with the con-
stant thicknessh. We propose a nonvolatile device, which
employs the magnetization direction within the DW as the in-
formation storage [44]. Without current, the transverse DW
stays at the place where the nanostrip’s cross-section is the
narrowest. When a particular current pulse is applied, the DW
magnetization angleφ flips from 0 to π. At the intermediate
step of this flipping process, the DW also deviates from the
narrowest position of the nanostrip and at the end it comes
back but with the opposite magnetization direction (for com-
putational details see Fig. 3 below). The same current pulse
at a later time can move it back to the original configuration
[45].

The time it takes to switch the magnetization depends on
the current pulse shape. During this process the main energy
loss in a realistic wire is the Ohmic loss. How much energy is
needed for a single switching also depends on the parameters
of the current pulse.

We, thus, aim to solve the following problems: 1) What
is the optimal (requiring the least amount of energy) current
pulse shape for a given switching time? 2) How the minimal
required energy per flip depends on the switching time? The
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answers to these questions are given in Figs. 2 and 3. Here we
sketch the calculation.

For a smooth nanostrip, we can approximate its width by a
parabolic shapew(z) = w0 + z2/R and its thicknessh ≪
w0, see Fig. 1. Then the correction to the DW energy due
to the shift from the center of the strip becomesE0(z0) =

γ0J
Mw0∆R

z20 , whereJ is the exchange constant,∆ is the DW
width, andR is the curvature radius of the nanostrip.

TakingH = 0 (no magnetic field applied) andazz = 1/∆
[46], and rescaling variables ast → κt/∆, z0 → z0/∆, and
j → j/κ to make all of them dimensionless, Eqs. (5) and (6)
become

j = ż0 + sin 2φ, (7)

Ω(t) ≡ φ̇− (α− β)ż0 + β sin 2φ− σz0 = 0. (8)

Here we have used the fact that in dimensionless variables the
z0-dependence of the DW energy isE0(z0) = σz20 with

σ =
γ0J∆

Mw0κR
. (9)

We can estimateσ for materials such as Permalloy using the
gyromagnetic ratioγ0 = 1.76 × 1011 s−1T−1, the exchange
constantJ = 1.3 × 1011 J/m, the saturation magnetization
M = 8×105 A/m, andκ = jc(α−β)/α where(α−β)/α ≈ 1
and the critical current measured in units of velocityjc ≈ 100
m/s. It givesσ ≈ ∆/(w0R) × 10 nm. Further taking for
realistic nanowiresR = 100 nm,w0 = 100 nm, and∆ ≈ 10
nm, we find thatσ ≈ 0.01 which makes it of the order ofα
andβ. It also justifies neglecting the terms proportional toασ
andβσ in Eqs. (7) and (8).

Our goal is to minimize the Ohmic losses [26, 47] per one
switch of the memory bit. It corresponds to the flipping of
the DW angleφ between two stable values0 to π, which are
defined by the minima of transverse anisotropy. To achieve
this, one has to minimizej2 during the switching timeT while
keeping the constraint (8).

The fact that the DW is at rest at the angleφ = 0 before the
current pulse and at rest again at the angleφ = π immediately
after the current pulse is taken into account by the boundary
conditionsφ(0) = 0, z0(0) = 0, ż0(+0) = 0, andφ(T ) = π,
z0(T ) = 0, ż0(T − 0) = 0.

In order to find minimum of the power
∫ T

0
j2dt with con-

straint (8), which must hold at all times, we use the Lagrange
multiplier J̇(t) and minimize the functional

∫ T

0

[j2 − J̇(t)Ω(t)]dt =

∫ T

0

[

(ż0 + sin 2φ)2 − J̇(t)Ω(t)
]

dt

with respect to three functionsz0(t), φ(t), and J̇(t) with
J(0) = 0. Then, in addition to Eq. (8), we obtain two equa-
tions

J̈ − 2βJ̇ cos 2φ+ 4(ż0 + sin 2φ) cos 2φ = 0, (10)

j = j0 +
σ

2
J − α− β

2
J̇ , (11)
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FIG. 2. (color online) Dependence of the switching energy inunits of∫
T

0
j2(t) dt on the switching timeT for σ = 0.01 (red dashed line),

σ = 0.03 (black solid line) andσ = 0.05 (blue dot-dashed line). The
inset shows the same dependence for smaller range of the switching
energies. One can clearly see the deviations of the simulated data
from the analytical solution for the smallT limit.

where to write the last equation we used Eq. (7), andj0 is an
integration constant. It can be seen thatj0 = j(0) if J̇(0) = 0.

First, we consider the case when the current is absent,j =
ż0 + sin θ = 0. ThenJ = 0 and equation (8) gives

φ̈+ 2αφ̇ cos 2φ+ σ sin 2φ = 0. (12)

For small anglesφ, this equation describes a damped har-
monic oscillator. Forα ≪ √

σ the motion is underdamped
and the DW performs oscillations with the frequencyω0 =√
2σ. Forα ≫ √

σ the motion is overdamped.
If one kicks the DW with a very narrow current pulsej(t) =

Aδ(t), integratingż0 + sin 2φ = Aδ(t) from−ǫ to ǫ with the
initial conditionz0(−ǫ) = 0 and taking the limitǫ → 0, we
find z+ = lim

ǫ→0
z0(ǫ) = A. The same procedure for equation

(8) givesφ+ = (α− β)z+ = (α− β)A. After this pulse, the
motion will be described by equation (12). Depending on the
characteristic time scales in this equation,1/

√
σ or 1/α, the

motion will be underdamped or overdamped.
Let us consider the limiting caseα = β = 0 of the system

without dissipation. Using Eqs. (7), (8), and (11) we find

z0 =
φ̇

σ
, (13)

J =
2

σ

(

φ̈

σ
+ sin 2φ− j0

)

. (14)

Substituting these equations into Eq. (10) we also obtain
(

2σ cos 2φ+
∂2

∂t2

)(

σ sin 2φ+
∂2

∂t2
φ

)

= 0. (15)

There is a trivial solution of this equation,φ(t) = 0, but it does
not satisfy the boundary conditions: the angle does not flip in
this case. However, in the limit when the switching process is
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fast, or alternativelyσ is small, one can find an approximate
solution. If the switching timeT satisfiesT

√
σ ≪ 1, all the

terms except for the fourth derivative can be neglected and we
obtain∂4φ/∂t4 = 0. Using the boundary conditions for both
φ andz0 one then finds

φ(t) = 3π(t/T )2 − 2π(t/T )3 (16)

which gives

j(t) =
1

σ
φ̈+ sin 2φ ≈ 1

σ
φ̈ =

6π

σ

(

1− 2t

T

)

. (17)

The switching energy measured in dimensionless units
∫ T

0
j2(t) dt is shown in Fig. 2. For smallT , according to

Eq. (17), it is given by12π2/(σ2T 3). The actual units of
the switching energy can be estimated asρJ2

c∆/(jch), where
ρ ≈ 1.4×10−7Ωm is Permalloy resistivity, the critical current
densityJc ≈ 1012 A/m2, ∆ ≈ h ≈ 10 nm; and the units of
time are∆/jc ≈ 10−10 s. This gives the units of the switch-
ing energy to be≈ 10−16 J. For comparison, best MRAM
devices typically consume10−10 J per switching a bit [48] in
5 ns. This shows that our proposed memory device is about
105 times more energy efficient for the same switching times.
Figure 2 also gives the estimate of the best switching time
achievable for any particular energy supplied per switch.

The full set of equations with realisticα andβ parameters
can be solved numerically. The comparison of the analytical
solution (17) for smallT with the numerics for a range ofT
is shown in Fig. 3. We find that the linear current coincides
with the simulation result for the short switching times, i.e.
T . 1/

√
σ. For long switching times, the optimal current

j(t) flips the DW and then lets it relax with some oscillations
to z0 = 0 andφ = π within the required timeT .

Summary. We have generalized the DW dynamics to the
case of translationally non-invariant ferromagnetic nanowires.
The obtained equations of motion make the description of
the DW propagation closer to experiment by accounting for
smooth surface roughness and other disorder effects. We have
also considered an hourglass-shaped nanostrip with a trans-
verse DW trapped in the middle as a prototype of a magnetic
memory device. The exact time-dependence of the current
pulses required to switch the magnetization with the minimal
Ohmic losses per switching has been obtained. Furthermore,
we find how the switching time depends on the Ohmic losses
per switching for the optimal current pulse. Our estimates
show that this hourglass-shaped nanodevice may be105 times
more energy efficient for the same switching times as used in
the best modern memory devices.

This work was supported by the NSF Grant No. 0757992,
ONR-N000141110780, and Welch Foundation (A-1678).
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FIG. 3. (color online) The time dependence of the DW positionand
angle for the optimal current pulse with the parametersα = 0.01,
β = 0.02, andσ = 0.03. Optimal currentj(t) (black solid line),
z0(t) (red dashed line) and angleφ(t) (blue dash-dotted line) as func-
tions of timet for (a)T = 1, (b)T = 10, (c)T = 30.
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