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We analyze the pairing symmetry in Fe-based superconductors AFe2Se2 (A = K, Rb, Cs) which
contain only electron pockets. We argue that the pairing condensate in such systems contains
not only intra-pocket component, but also inter-pocket component, made of fermions belonging to
different electron pockets. We analyze the interplay between intra-pocket and inter-pocket pairing
depending on the ellipticity of electron pockets and the strength of their hybridization. We show
that with increasing hybridization the system undergoes a transition from a d−wave state to an
s+− state, in which the gap changes sign between hybridized pockets. This s+− state has the full
gap and at the same time supports spin resonance, in agreement with the data. Near the boundary
between d and s+− states we found a long-sought s+ id state which breaks time-reversal symmetry.

Introduction: High-temperature superconductivity
in Fe-based superconductors (FeSCs) is at the top of
the list of the most relevant issues for the physics com-
munity [1–4]. Superconductivity in weakly/moderately
doped FeSCs is generally believed to be the consequence
of the complex geometry of the Fermi surface (FS), which
consists of hole and electron pockets located in separate
regions of the Brillouin zone. The prevailing scenario is
that the gap has an s−wave symmetry, changes sign be-
tween hole and electron pockets [5, 6] and may even have
accidental nodes [1, 7].

This scenario has been challenged recently by the ob-
servation of high-temperature superconductivity [8, 9] in
AxFe2−ySe2 (AFe2Se2) with A = K, Rb, Cs, which have
only electron pockets, according to photoemission [10].
Several groups argued [11–14] that interaction between
electron pockets in AFe2Se2 plays the same role as intra-
pocket hole-electron interaction in weakly doped FeSCs,
and the gap must change sign between two electron pock-
ets. Such a ”plus-minus” gap has no nodes, but it is
antisymmetric with respect to the interchange of X and
Y directions (along which the two pockets are located),
and hence has d-wave symmetry. A no-nodal d-wave gap
is, however, rather fragile and was argued [15] to acquire
symmetry-related nodes once one includes the hybridiza-
tion between the electron pockets due to an additional
hopping via a chalcogen (Se). The data on AFe2Se2,
however, show that the gap has no nodes [16–18], what
led other groups to argue [19–21] that the gap in AFe2Se2
must be a sign-preserving s-wave. Such gap, however, is
also problematic as it is inconsistent with recent obser-
vation of the spin resonance below Tc in RbxFe2−ySe2
(Ref. [22]).

In this letter we show that a nodeless superconduc-
tivity, consistent with the spin resonance, in fact ap-
pears quite naturally in a situation when only electron
pockets are present. We argue that complete theory of
superconductivity in such geometry should include on
equal footing a pairing condensate made out of fermions

on the same pocket (intra-pocket pairing) and a pair-
ing condensate made out of fermions on different pock-
ets (inter-pocket pairing). Inter-pocket pairing has been
discussed in early days of Fe-pnictides regarding a pos-
sible spin-triplet, even-parity pairing in weakly doped
FeSCs [23, 24], and in the context of pairing in orbital
representation [25], but was not considered in previous
works on the pairing in FeSCs with only electron pock-
ets [26]. For AFe2Se2 inter-pocket pairing is particularly
important because both hybridization and ellipticity are
small [15]. We show that the interplay between intra-
and inter-pocket pairing leads to a competition between
d-wave and s-wave states. We find three phases merging
at the tetra-critical point – an s-wave, a s+id state which
breaks time-reversal symmetry, and a d-wave state (Fig.
1). In s-wave and s + id states, all states are gapped.
In a d-wave state, there are vertical loop nodes centered
kz = π/2. In some range of parameters, loops collapse
and a d-wave state also becomes nodeless (d′ phase in
Fig. 1). The s-wave is of plus-minus type – the gaps on
hybridized FSs have opposite signs. Such state has been
earlier proposed phenomenologically by Mazin [15]. Our
study provides the microscopic mechanism of such s+−

superconductivity.

The model We consider the low-energy physics of
FeSCs with only electron pockets within a 2D model of
interacting fermions near (0, π) and (π, 0). The hop-
ping via a pnictogen/chalcogen hybridizes the two elec-
tron pockets and also gives rise to additional 4-fermion
interactions with excess momentum Q = (π, π) taken
by pnictogen/chalcogen. The hybridization in AFe2Se2
actually involves momentum (π, π, π) because of body-
centered tetragonal structure of these materials, i.e., hy-
bridized fermions belong to different planes separated by
kz = π [15,27]. To simplify the presentation, we first con-
sider hybridization for a simple tetragonal structure, for
which hybridized fermions have the same kz , and then ex-
tend the analysis to body-centered tetragonal structure.

Let c†k be a creation operator for electrons at (0, π), and
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FIG. 1: The phase diagram in (κ, T )–plane for Fe-based su-
perconductors with only electron pockets (κ is the ratio of the
hybridization and the degree of ellipticity of the electron pock-
ets). The s+ id phase with broken time reversal symmetry is
shown by the dark (grey) shaded area. The two neighboring
superconducting phases at κ < (>)κ∗ have d(s)-wave symme-
try, respectively. In the d′ region the excitation spectrum is
fully gapped even though the symmetry is d-wave.

f †
k = c†k+Q is a creation operator of electrons at (π, 0).
The quadratic part of the Hamiltonian H = H2+Hint is

H2 =
∑

k

ǫckc
†
kck+

∑

k

ǫfkf
†
kfk+

∑

k

λ
[

c†kfk+f †
kck

]

, (1)

where the first two terms describe fermion dispersion,
and the last term describes the hybridization. The two

elliptical FSs are defined by ǫ
c(f)
k = ǫF . We approximate

fermion excitations near these FSs by ǫck = vF (φ)(k −
kF (φ)), ǫfk = vF (φ+π/2)(k−kF (φ+π/2)), where φ is the
angle along each of the FSs counted from the x−axis. By
virtue of tetragonal symmetry, vF (φ) = vF (1 + a cos 2φ)
and kF (φ) = kF (1 + b cos 2φ). The anisotropy of the
Fermi velocity does not play a major role in our analysis,
but the eccentricity of the FS (the parameter b) is overly
relevant. Both b and λ/(vFkF ) are small for AFe2Se2
(Ref.[15]), but their ratio κ = λ/(vF kF |b|) can be arbi-
trary.
The interaction Hamiltonian involves direct,

momentum-conserving, 4-fermion interactions, and
interactions with excess momentum Q. There are four
direct interactions allowed by symmetry:

H1 =
u1

2

∫

dx
(

c†σf
†
σ′fσ′cσ + f †

σc
†
σ′cσ′fσ

)

H2 =
u2

2

∫

dx
(

c†σf
†
σ′cσ′fσ + f †

σc
†
σ′fσ′cσ

)

H3 =
u3

2

∫

dx
(

c†σc
†
σ′fσ′fσ + f †

σf
†
σ′cσ′cσ

)

H4 =
u4

2

∫

dx
(

c†σc
†
σ′cσ′cσ + f †

σf
†
σ′fσ′fσ

)

(2)

H1 and H2 are inter-band density-density and exchange
interactions, H4 is the intra-band density-density inter-
action, and H3 describes the umklapp pair-hopping pro-
cesses. For circular pockets, the couplings ui are related
as there are only three combinations invariant under O(2)
rotational symmetry in (c, f) space and SU(2) spin sym-
metry – n2, S2, and ñ2, where n = c†αcα + f †

αfα is
the total charge density, S = (1/2)(c†αcβ + f †

αfβ)σαβ ,
is the total spin, and ñ = c†αfα − f †

αcα. Hence H =
Un2/2 + J

′

ñ2/2 + 2JS2, and the interactions ui are
u1 = U − J, u2 = −2J − J

′

, u3 = J
′

, u4 = U − 3J .
Then u4−u3 = u1+u2 = U −3J−J

′

. For weak elliptic-
ity, u1 + u2 and u4 − u3 do not have to be identical, but
remain close and we will keep them equal for simplicity.
We will need u to be positive for superconductivity. This
is the case when Hund interaction is the dominant one.
If u is negative, the system likely develops a magnetic
order instead of superconductivity. The interaction with
excess momentum Q is

HQ = w1

∫

dx(c†σfσ + f †
σcσ)(c

†
σ′cσ′ + f †

σ′fσ′) . (3)

Other interactions with Q vanish without time-reversal
symmetry breaking.
The quadratic Hamiltonian can be diagonalized

by unitary transformation to new operators ak =
ck cos θk + fk sin θk, bk = −ck sin θk + fk cos θk with

sin 2θk = λ/
√

λ2 + (ǫck − ǫfk)
2/4, cos 2θk = (ǫck −

ǫfk)/(2
√

λ2 + (ǫck − ǫfk)
2/4). In terms of new operators,

H2 =
∑

k

Ea
ka

†
kak +

∑

k

Eb
kb

†
kbk (4)

with

Ea,b
k =

1

2

(

ǫck + ǫfk

)

±
[

λ2 +
(

ǫck − ǫfk

)2

/4

]1/2

. (5)

In our notations, (ǫck+ ǫfk)/2 ≈ ǫF +vF (k−kF ) = ǫF + ξ,

and (ǫck−ǫfk)/2 ≈ vF kF b cos 2φ, such that Ea,b
k −ǫF = ξ±

λ
(

1 + cos2 2φ/κ2
)1/2

, cos2 2θ = cos2 2φ/(κ2 + cos2 2φ),

and sin2 2θ = κ2/(κ2 + cos2 2φ).
The interplay between intra-pocket and inter-pocket

pairing can be understood by considering the limits of
small and large κ (Fig. 2). At κ → 0 the hybridization
vanishes, and c and f are primary operators. For ellip-
tical pockets, intra-pocket pairing susceptibility is larger
than inter-pocket one, and when u3 > u4, the system de-
velops a conventional pairing instability with ∆c = 〈c†↑c

†
↓〉

and ∆f = 〈f †
↑f

†
↓〉 and ∆f = −∆c (Fig. 2a). This solution

is antisymmetric with respect to c ↔ f and hence is d-
wave. In the opposite limit of large κ, a and b are primary
fermion operators, and the FSs of a and b fermions are
well separated in the momentum space (Fig. 2b). The
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leading pairing instability is again a conventional intra-
pocket one, and the gaps ∆a = 〈a†↑a

†
↓〉 and ∆b = 〈b†↑b

†
↓〉

obey ∆a = −∆b. This gap, however, is a sign-changing
s-wave rather than d-wave. To see this, we note that
at large κ, a†↑a

†
↓ − b†↑b

†
↓ = c†↑f

†
↓ + f †

↑c
†
↓, i.e., the solution

∆a = −∆b corresponds to non-zero 〈c†↑f
†
↓ + f †

↑c
†
↓〉. The

latter combination is symmetric with respect to c ↔ f
and hence is an s-wave, but it also shows that in terms of
c and f fermions we now have inter-pocket pairing. What
happened with the d-wave solution? At large κ we have
c†↑c

†
↓−f †

↑f
†
↓ = −(a†↑b

†
↓+ b†↑a

†
↓). Hence, in terms of a and b

operators, d-wave pairing now becomes inter-pocket pair-
ing. We see therefore that intra-pocket pairing in terms
of one set of fermions corresponds to inter-pocket pairing
in terms of the other set. To describe the transformation
from d- to s-wave symmetry we then have to include the
two pairings on equal footing.

+

−−

+

+

−

(a) (b)

FIG. 2: The structure of superconducting gap at small and
large κ. At the smallest κ (panel a), the gap has different
sign on the original FS pockets and is d-wave because it is
antisymmetric with respect to rotation by 90◦. At large κ
(panel b), the gap again changes sign, but now between hy-
bridized FS pockets. This gap is symmetric with respect to
90◦ rotation and is an s-wave.

It is natural to analyze the pairing in terms of a and
b fermions because the Hamiltonian, Eq. (1), is then
quadratic at all values of κ. We introduce intra– and
inter–band pair creation operators,

J†
± =

1

2

(

a†a† ± b†b†
)

, J̃†
± =

1

2

(

a†b† ± b†a†
)

. (6)

The combinations J†
+ and J̃†

− describe an ordinary, ”plus-
plus” s-wave pairing and spin-triplet, even parity inter-
band pairing, respectively (the triplet channel is iden-
tical to the one considered in [23]). In our case, these
two pairing channels are strongly repulsive, and we can
safely omit them. The linear combinations of the other
two components J†

− and J̃†
+ describe s-wave pair creation

operators

1

2

(

c†σf
†
σ′ + f †

σc
†
σ′

)

=
[

cos 2θJ̃†
+ + sin 2θJ†

−

]

σσ′

(7)

and d-wave pair creation operators

1

2

(

c†σc
†
σ′ − f †

σf
†
σ′

)

=
[

cos 2θJ†
− − sin 2θJ̃†

+

]

σσ′

, (8)

The interaction, Eq. (2), can then be decomposed into
an s-wave and d-wave channels, Hint = Hs +Hd with

Hs = −2u[s′J†
− + c′J̃†

+]σσ′ [sJ− + cJ̃+]σ′σ , (9)

Hd = −2u[c′J†
− − s′J̃†

+]σσ′ [cJ− − sJ̃+]σ′σ , (10)

where c ≡ cos 2θ, c′ ≡ cos 2θ′, s ≡ sin 2θ, s′ ≡ sin 2θ′.
We emphasize that the intra– and inter– band pairings
enter Eqs. (9), (10) on equal footing. The interaction HQ

couples these two channels with plus–plus s-wave channel
and spin-triplet channels which we already neglected, and
does not play a role in our analysis.
Ginzburg-Landau Functional: To map a phase

diagram in (κ, T )-plane we derive the Ginzburg-Landau
Functional (GLF). We introduce order parameters ∆s

and ∆d to decouple the interaction in two Cooper chan-
nels using the Hubbard-Stratonovitch identity, integrate
over fermion fields and expand the effective action in
powers of ∆s and ∆d. Carrying out the calculations
(see [28]) we obtain

FGL = As|∆s|2 +Ad|∆d|2 +
Bs

2
|∆s|4 +

Bd

2
|∆d|4

+C|∆s|2|∆d|2 +
E

2

(

(∆s∆
∗
d)

2 + (∆∗
s∆d)

2
)

. (11)

The transition to either s-wave or d-wave state is de-

     
0

0.5

1

     
0

0.5

1

ϕ

ϕ

ϕπ/4

π/4

∆(ϕ)

∆d

∆(ϕ)

∆s

(a) (b)

FIG. 3: a) Location of the nodal points in the d-wave phase
(crosses). Upon approaching the boundary of d′ phase in
Fig.1, nodal points come closer and eventually collapse, lead-
ing to a nodeless d-wave state. b) The modulation of the gap
magnitude along the FSs for d-wave and s-wave states.

termined by As = 0 or Ad = 0, whichever comes first.
The lines As = 0 and Ad = 0 cross at some criti-
cal κ∗, at which Tc = T ∗

c . For λ ≫ T ∗
c (the case of

AFe2Se2, Ref.[15]), we obtain κ∗ = 1/
√
3 (in the other

limit λ ≪ T ∗
c κ∗ = 1/

√
2 (Ref. [28])). Near the critical

κ, the first instability occurs at Tc,s = T ∗
c (1 +α(κ− κ∗))

for κ > κ∗ and at Tc,d = T ∗
c (1 + α(κ∗ − κ)) for κ < κ∗,

where α = 3
√
3/(2uNF ) (see Fig. 1).

The type of the transition from a d-wave order at
κ < κ∗ to an s-wave order at κ > κ∗ is determined by
the the interplay between fourth-order terms in Eq. (11).
The transition can be either first order or continuous, via
an intermediate phase where both orders are present. At
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T = T ∗
c we obtained Bs = Bd = B = 5

8I0, C = 3
8I0,

and E = C/2, where I0 = 7ζ(3)/8π2(T ∗
c )

2. We see that
E > 0 and B + E > C. An elementary analysis then
shows that the transition from d to s involves an inter-
mediate phase in which the two orders mix with relative
phase ±π/2. This is long-sought s±id state [29,30]. The
system chooses either s+ id or s− id state and by doing
this breaks time-reversal symmetry. An s+ id state con-
tains orbital currents and should be detectable in, e.g.,
neutron scattering [31] and Josephson junction experi-
ments. [32] The boundaries of this intermediate phase are
set by Ts+id = T ∗

c (1−β|κ−κ∗|), where β = 6
√
3/(uNF ).

We emphasize again that both the transition from s to
d and the existence of the intermediate phase are due to
the competition between intra-pocket and inter-pocket
pairing.

Fermion excitations In the s-wave state and in the in-
termediate s ± id state excitations are fully gapped. In
the d-wave state, the excitation spectrum is given [28]:

ω2
± = |∆d|2 cos2 2θ +

(

√

ξ2 + |∆d|2 sin2 2θ ±
λ

sin 2θ

)2

,

(12)
where, we remind, ξ ≈ vF (k − kF ). The dispersion ω−

has nodes along the diagonal directions where cos 2θ = 0,
as it should be for a d-wave superconductor. However the
nodal points are located in between a and b FSs, as shown
in Fig. 3a. This is another consequence of inter-pocket
pairing. We plot the dispersions in s- and d-wave states
in Fig. 3b. We furthermore see from (12) that nodes
in the d-wave state exist only if |∆d| < λ, otherwise the
second term in the r.h.s of (12) does not vanish even when
ξ = 0. The condition |∆d| = λ then sets the boundary of
the nodeless d-wave state (d′ state on Fig. 1).

Application to AFe2Se2: The hybridization of electron
pockets in AFe2Se2 is more involved because of the body-
centered tetragonal structure of these materials [8]. The
two hybridized electron FSs differ by kz = π and are
rotated by π/2 (see Fig. 4a-c and Refs.[15, 27]). For
kz = 0 and kz = π, the FS in the folded zone consists
of co-aligned ellipses (Fig. 4d-f), the pair near (π, π) at
kz = 0 is identical to the one near (−π, π) at kz = π. At
kz = ±π/2, the pockets are C4 symmetric already be-
fore hybridization, and the hybridization leads to identi-
cal pairs at (π, π) and (−π, π). s-wave and d-wave gaps
differ in whether the gap on the larger ellipsis retains
sign or changes sign between kz = 0 kz = π (Fig. 4g-
h). Near kz = π/2, the hybridization instantly favors
s−wave, if we approximate C4-symmetric pockets as cir-
cles, but overall which of the two states is realized de-
pends on κ averaged along kz and on the strength of kz
dependence of the interaction u. Note that in a d-wave
state nodes exist near kz = π/2, but not near kz = 0
and kz = π, where the two FSs in the same corner in the
folded zone are separated – they are co-axial ellipses of
different sizes, and hybridization only causes minor vari-

kz=0

+
− −

+
+ −

+−

kz=π kz=π/2

kz=0 kz=π kz=π/2

kz

kx
ky

s−wave d−wave

(a) (b) (c)

(i)

(d) (e) (f)

(g) (h)

π/2

FIG. 4: The structure of electronic states and the supercon-
ducting gap in AFe2Se2 which have body-centered tetragonal
structure. Panels a-c – electron pockets in the unfolded Bril-
louin zone for different kz. Panels d-f – same in the folded
zone. The two ellipses at each corner remain co-axial and ro-
tate by 90o between kz = 0 and kz = π. Panels g-h – s-wave
and d-wave gap structure near kz = 0 and kz = π. Panel i –
the location of the nodes at kz ≈ π/2. The nodal points form
vertical loops (only two are shown for clarity). If hybridized
FSs at π/2 are two circles, the crosses extend and form lines
in (kx, ky) plane (dashed lines in the Figure).

ations of originally angle-independent gap (this behavior
is the same as in d′ region in Fig. 1). Because of this, the
nodes in the d-wave state form vertical loops centered at
kz = π/2 (Fig. 4i). Vertical loop nodes have been earlier
suggested on phenomenological grounds [33,34], but have
not been obtained microscopically earlier.

To conclude, in this work we argued that the pair-
ing in Fe-based superconductors with only electron pock-
ets must necessary include inter–band condensate made
of fermions belonging to different pockets. We demon-
strated that the interplay between intra-pocket and inter-
pocket pairing leads to a transition from d-wave pairing
at small degree of hybridization to an s+−-wave pairing
at larger hybridization. In between there is an interme-
diate s± id state with broken time reversal symmetry.

Fermionic excitations in s+− and s+ id states are fully
gapped, yet in both states there is the spin resonance
below Tc [15, 35, 36]. The absence of the nodes and the
existence of the spin resonance are consistent with the
data on AFe2Se2 [8, 22], what makes s+− state, and, po-
tentially, s+ id state the likely candidates.
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