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Superconductivity in the iron pnictides develops near antiferromagnetism, and the antiferromag-
netic (AF) phase appears to overlap with the superconducting phase in some materials such as
BaFes_;T»Ass (where T'= Co or Ni). Here we use neutron scattering to demonstrate that genuine
long-range AF order and superconductivity do not coexist in BaFes_,Ni; Ass near optimal super-
conductivity. In addition, we find a first-order-like AF to superconductivity phase transition with
no evidence for a magnetic quantum critical point. Instead, the data reveal that incommensurate
short-range AF order coexists and competes with superconductivity, where the AF spin correlation
length is comparable to the superconducting coherence length.

High-temperature superconductivity (high-T.) in iron
pnictides arises at the border of antiferromagnetism [1-
3]. Since magnetic excitations may be responsible for
electron pairing and superconductivity [4-7], it is essen-
tial to understand the doping and temperature depen-
dence of the antiferromagnetic (AF) spin correlations.
For electron-doped iron pnictides such as BaFey_ T, Aso
(where T = Co or Ni), the Néel temperature (T) of
the system decreases gradually with increasing electron-
doping level z and the AF phase appears to overlap with
the superconducting phase [8-10]. This raises the ques-
tion concerning the role of quantum criticality [11] and
the coexisting AF order and superconductivity to the
superconducting pairing mechanism [12, 13]. Here we
use neutron scattering and transport measurements to
show that genuine long-range AF order does not coex-
ist with superconductivity in BaFes_,Ni, Asy near opti-
mal doping. With increasing x, the static AF order in
BaFey_,Ni,Asy changes abruptly from a commensurate
wave vector for x = 0.085 to an incommensurate wave
vector with short-range order for x = 0.092,0.096. While
the ordered moment decreases smoothly from x = 0.085
to 0.096, the Néel temperature (T) changes slowly from
~47 K for x = 0.085 to ~35 K for x = 0.096 before
vanishing at z = 0.1. In addition, we find that the short-
range incommensurate AF order directly competes with
superconductivity, and there is no evidence for a conven-
tional magnetic quantum phase transition between the
two phases. Therefore, the presence of microscopic coex-
isting long-range AF and superconducting phases and a
magnetic quantum critical point (QCP) between the AF
and superconducting phase are not essential for super-

conductivity in the BaFes_, T, As, family of materials.

In earlier neutron and X-ray scattering work on
BaFey_,T,Ass, the competition between coexisting su-
perconductivity and antiferromagnetism was inferred
from the reduction of the magnetic Bragg peak inten-
sity below T, [14-18]. If superconductivity and static
long-range AF order coexist microscopically and com-
pete for the same electrons, the superconducting pairing
symmetry is most likely sign-reversed s*-wave [12, 13].
However, muon spin rotation (uSR) experiments on un-
derdoped BaFe; g9Cog.11Asy suggest an incommensurate
spin density wave below T™% =~ 32 K with a reduced
ordered magnetic moment below T, = 21.7 K [19]. Neu-
tron scattering reveals that the commensurate AF order
at the wave vector @ = (0.5, 0.5, 1) becomes transversely
incommensurate at @ = (0.5 —6,0.5+6,1) (inset in Fig.
la) for BaFey_,Co,Ase with 0.112 < 2 < 0.12 [20].

We carried out systematic neutron scattering experi-
ments on BaFes_,NipAs, using C-5, Rita-2, and BT-7
triple-axis spectrometers at the Canadian Neutron Beam
Center, Paul Scherrer Institute, and NIST Center for
Neutron Research (NCNR), respectively. For C-5 and
BT-7 thermal triple-axis spectrometers, the final neutron
energies were set to By = 14.56 and Ey = 13.8 meV, re-
spectively, with pyrolytic graphite (PG) as monochroma-
tor, analyzer, and filters. For Rita-2 measurements, the
final energy was Ey = 4.6 meV and a cooled Be filter was
additionally used as a filter. High quality single crystals
were grown by FeAs self-flux method as described pre-
viously [21]. We define the wave vector @ at (¢, ¢y,
¢.) as (H,K,L) = (gza/2m,qyb/27m,q.c/2m) reciprocal
lattice units (rlu) using the tetragonal unit cell, where
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FIG. 1: (a) Electronic phase diagram of BaFes_,NiyAss as
a function of z. The long-range commensurate AF (C-AF)
order changes into short range incommensurate AF (IC-AF)
order for x = 0.085 — 0.096. The optimal superconductivity
occurs at © = 0.10, where the static AF order is suppressed
[22]. The inset shows positions of C-AF and IC-AF positions
in reciprocal space in tetragonal notation, where § = e/\/§
(b) The Ni-doping dependence of the in-plane AF spin-spin
correlation length. For 2=0.096, we have £ ~ 66 A and the
superconducting coherence length ¢3¢ ~ 27 A [40]. (c) The
doping dependence of the ordered magnetic moment M [23].
(d) Temperature dependence of the magnetic order parameter
at @ = (0.5,0.5,1) and (0.5, 0.5, 3) AF Bragg positions for
x = 0,0.03,0.065, and (e) z = 0.085,0.092, 0.096.

a~b~3.96 A, and ¢ = 12.77 A.

Figure la shows the electronic phase diagram of
BaFes_,Ni,Ass as a function of Ni-doping x as deter-
mined from our neutron scattering experiments, where
the commensurate to incommensurate AF phase transi-
tion occurs between x = 0.085 and 0.092. Figures 1b,
lc, 1d and le show the Ni-doping dependence of the
spin correlation length, moment, and magnetic order pa-
rameters, respectively. While the Néel temperatures de-
crease gradually with increasing = for 0 < x < 0.065 as
shown in Fig. 1d [14-18], they decrease rather slowly
for x = 0.085,0.092,0.096 before vanishing abruptly at
x = 0.1 (Figs. la and le) [22]. For comparison, the or-
dered moment decreases smoothly to zero with increas-
ing x at 0.1 (Fig. 1c), consistent with the presence of
a magnetic QCP [11]. However, the static spin correla-
tion length, which is instrumental resolution limited for
x < 0.085, decreases abruptly for samples with incom-
mensurate AF order (Fig. 1b) [23]. This is contrary to
the magnetic QCP in CeFeAs;_,P,O where the com-
mensurate AF order is resolution limited at all = as the
ordered moment vanishes with  — 0.4 [24].

To demonstrate the doping evolution of the AF order
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FIG. 2: Temperature and wave vector dependence of the
C-AF and IC-AF scattering for BaFes_,NizAse with x =
0.085,0.092 and 0.096. Samples are aligned in the [H, H,6H]
and [H,1 — H, 3] scattering plane. The solid red lines are the
instrumental resolutions obtained using A/2 scattering from
the (1,1, 6) nuclear Bragg peak above T without filter. Data
in (a~d) are collected on C-5. (a,b) Longitudinal and trans-
verse scans at different temperatures through the (0.5, 0.5, 3)
AF Bragg peak for x = 0.085. The scattering is commenus-
rate in both directions but not instrumental resolution lim-
ited. The solid lines in transverse scans are Lorentzian fits to
the data. (c,d) Identical scans using the same experimental
setup for x = 0.092, which show clear incommensurate scat-
tering along the transverse direction. (e,f) Longitudinal and
transverse scans for z = 0.096 at Q = (0.5,0.5,3) collected
on Rita-2. The solid horizontal bars are the calculated in-
strumental resolution, determined by the supermirror guide
before the monochromator, the 80" collimation, the radial col-
limator of the Be filter (about 150"), the neutron absorbing
guide after the analyzer (effective collimation of 40") and a
sample mosaic spread of ~15'. Inserts show the color images
of incommensurate peaks centered around @ = (0.5,0.5,3)
and the scan directions at 2 K.

through the commensurate to incommensurate AF phase
transition, we summarize in Fig. 2 longitudinal and
transverse scans along the [H, H,6H]| and [H,1 — H, 3]
directions for z = 0.085,0.092, and 0.096 at different tem-
peratures, where the solid red lines indicate the instru-
mental resolution. For x = 0.085, the scattering is com-
mensurate along both the longitudinal and transverse di-
rections, but not instrumental resolution limited (Figs.
2a and 2b). Furthermore, the lineshape of transverse
scan is not a Gaussian but can be fit with a Lorentzian.
Figures 2¢ and 2d show identical scans using the same
instrument for the z = 0.092 sample. Here, we find
broad commensurate scattering in the longitudinal di-
rection and clear incommensurate peaks in the transverse
direction. Figures 2e and 2f plot longitudinal and trans-
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FIG. 3: Effect of a 14.8 T magnetic field on the short-range
incommensurate AF order in the x = 0.096 sample. For this
experiment on Rita-2, a single crystal of mass about 0.5 gram
and mosaic of 0.45° was aligned in a 15-T magnet in the
[H,H,6H] and [H,1 — H, 3] scattering plane as shown in the
inserts of (b) and (c). Neutrons of F; = Ef = 4.6 meV were
selected, with the nine blades of the analyzer set to probe
different points in reciprocal space. Two filters were em-
ployed to remove higher order neutrons: a pyrolytic graphite
placed just before the sample, along with a 80" collimator,
and cooled Be placed just after the sample. (a) Transverse
scans at zero field and at T' = 2 K (below T¢), 20 K (around
T.) , 25 K (T. < T < Tn) and 40 K (above T). The in-
commensurability +§ remains at 0.018 for all measured tem-
peratures. (b) Comparison between zero and 14.8 T fields
at T = 2 K. The 14.8 T magnetic field clearly enhances the
IC-AF order. (c) Identical scans at T' = 25 K, where a 14.8
T field suppresses the incommensurate AF order. (d) The
effect of a 14.8 T field on the incommensurate AF order.
While the field enhances the IC-AF order at 2 K, it may
suppress the IC-AF order in the normal state. (e) Temper-
ature dependence of the magnetic order parameters at the
incommensurate position @ = (0.48,0.52,3) for 0 and 14.8
T fields. The superconducting transition temperature 7. is
seen to shift from ~19 K to ~15 K. (f) Magnetic field depen-
dence of the AF Bragg peak intensity at Q = (0.48,0.52, 3).
The data show a linear field dependence, consistent with a
field-induced suppression of superconducting transition tem-
perature AT, = (Tc(0) — T.(B))/T.(0) as determined from
resistivity measurements on the same sample (solid blue cir-
cles and lines).

verse scans along the aforementioned directions for the
x = 0.096 sample. Converting these widths into real
space [23], we find that the static spin correlation length
along the longitudinal direction is only 62 +5 A while it
is 81+ 15 A and 249 + 35 A for the z = 0.092 and 0.085
samples, respectively.

Figure 3a-3c shows the detailed temperature depen-
dence of the transverse scans at zero and a field of

14.8 T. At zero field, transverse scans are featureless at
T = 40 K (> Ty) but show broad peaks indicative of
incommensurate AF short-range order below Ty~ 35 K.
At T = 20 K just above T, the peak intensity continues
to increase, but decreases upon further cooling to 2 K
(Fig. 3a). These results are consistent with earlier work
on BaFey_,Co,Ass [20]. Upon applying a 14.8 T field
aligned at ~37° out of the FeAs-plane (Fig. 3b), we see
that the broad peak at zero field and 2 K increases in
intensity and becomes two clear incommensurate peaks
centered at @ = (0.5—6,0.5+6, 3) with § = 0.018 £0.002
rlu. For a temperature just above T, at 25 K, the broad
peaks appear to merge into a single commensurate peak
centered at @ = (0.5,0.5,3) (Fig. 3c). To determine
the net effect of a 14.8 T field, we show in Fig 3d the
field-on minus field-off difference plots. At T = 2 K,
the effect of a field is to induce clear incommensurate
peaks, different from the field effect on superconduct-
ing BaFeo_;Ni, Asy with lower x [18]. At a temperature
(T = 25 K) just above T, the effect of a field appears to
be opposite and suppresses the incommensurate AF or-
der. Figure 3e shows the temperature dependence of the
scattering at the incommensurate position at zero and
14.8 T. At zero field, the data reveal a clear suppression
of the magnetic intensity at 7,.. A 14.8 T field reduces
T. from 19 K to 15 K and enhances the incommensu-
rate AF order. The intensity of the incommensurate AF
scattering increases linearly with increasing field, consis-
tent with the field-induced reduction in the supercon-
ducting transition temperature as determined from resis-
tivity measurements (Fig. 3f). However, the linewidths
of the incommensurate peaks remain unchanged at 2 K
(Fig. 3b). Therefore, superconductivity competes with
the short-range incommensurate AF order instead of the
long-range AF order.

In transport and nuclear magnetic resonance (NMR)
experiments on isoelectronic BaFeq(As;_,P,)s [25-28],
a magnetic QCP has been identified at x = 0.33, which
is believed to play an important role in the supercon-
ductivity of these materials [11]. For BaFe;_,Co,Ass,
recent systematic ultrasonic measurements [29] suggest
the presence of a structural QCP near optimal supercon-
ductivity, where the structural distortion associated with
the static AF order vanishes. These results are consis-
tent with NMR measurements, where the strength of the
paramagnetic spin fluctuations diverges for Co concentra-
tion near optimal superconductivity [30]. If Ni-doping in
BaFeqAss is equivalent to twice the Co-doping [31], one
should also expect a structural and magnetic QCP near
optimal superconductivity for BaFes_,.Ni,Ass. Since
the incommensurate AF spin correlations for the xz =
0.092,0.096 samples clearly do not increase with de-
creasing temperature, it is difficult to reconcile this re-
sult with a magnetic QCP, where one expects a diverg-
ing spin-spin correlation length as T' — 0 K. Further-
more, the Néel temperature of BaFe;_ ;Ni, Ass suddenly
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FIG. 4: Temperature and doping dependence of in-plane re-
sistivity of BaFea_NiyAsy in the normal state (T' > T, T >
T.) derived from ref. [21] and ref. [33], where pq;(T = 300 K)
is assumed to decrease linearly with increasing x. The gra-
dient color is the first order differential of resistivity in the
normal state, dpes»/dT, suggesting the linear term emerges
from the overdoped regime. Open symbols are the exponent
n deduced from fitting p = po + AT™ in the normal state,
which minimizes to n &~ 1.5 near z = 0.15. An anomalous n
is found for the IC-AF sample.

vanishes at * = 0.1 from Ty ~35 K for x = 0.096.
Therefore, instead of a magnetic QCP, the incommen-
surate AF order to superconductivity phase transition in
BaFes_,Ni,Asy appears to be a first order, much like
that of the LaFeAsO;_,F, family of materials [32].

If there is a magnetic QCP in the phase diagram of
BaFey_,NigAsy near x = 0.10 where the static long-
range AF order vanishes [22], the temperature depen-
dence of the resistivity p = pg + AT™ should have an
exponent n ~ 1 near z = 0.1 within a single band model
similar to that of BaFeq(As;_,P.)2 at x = 0.33 [28].
Figure 4 shows the electron-doping dependence of the re-
sistivity exponent n obtained by fitting the temperature
dependence of the resistivity of BaFes_,Ni,Asy [21, 33].
The resistivity exponents show a broad minimum with
n ~ 1.5 near x = 0.15. Similar analysis on the in-plane
resistivity data of BaFes_,Co,Asy in the normal state
also yielded minimum n in the overdoped region, clearly
different from that for BaFey(As;_,P,)2 [28]. Therefore,
our data suggest no magnetic QCP near the boundary of
AF and superconducting phases in BaFey_, T, Asy. This
is consistent with the more accurate two band analysis
of the normal state resistivity for BaFey_, T, Ass [34, 35],
where a Fermi liquid like coefficient n = 2 was found
for optimally doped BaFe,_,T,Asy again suggesting no
QCP near optimal superconductivity.

The observation of competing static short-range in-
commensurate AF order with superconductivity and the
first-order-like AF to superconductivity phase transition
raises the question concerning how AF order microscopi-
cally coexists with superconductivity in Fe-based super-
conductors [18]. In a recent °"Fe Mossbauer spectroscopy
study of BaFes_,Ni,Ass, a small reduction in magnetic
hyperfine field below T, was found for the x = 0.085 sam-

ple [36]. Although such measurements suggest coexisting
AF order and superconductivity on a length scale of ~27
A [36], Méssbauer spectroscopy cannot provide a precise
length scale of the AF spin correlations and their dop-
ing dependence. For comparsion, our data show that AF
order at this doping level is commensurate with a correla-
tion length of ~250 A (Figs. 1b and 2a). For hole-doped
Baj_,K,FeaAss, uSR [37] and neutron powder diffrac-
tion [38, 39] measurements have suggested microscopic
coexisting AF and superconducting phases in the un-
derdoped regime. However, these measurements did not
probe the region of the phase diagram close to optimal
superconductivity, and were unable to provide a length
scale for the AF order that coexists with the supercon-
ductivity. From Figs. 1-3, we see that the static incom-
mensurate AF order competing with superconductivity
has a spin-spin correlation length of ~60 A. This means
that the incommensurate AF order has a similar length
scale to the superconducting coherence length (~27 A)
[40], and that, near optimal doping, there is no long-range
AF order coexisting with superconductivity. Instead, our
data can be understood in two scenarios: first, the two
orders coexist microscopically and homogeneously, and
compete for the same itinerant electrons [12, 13], such
that superconductivity occurs at the expense of the static
AF order. When a magnetic field is applied, the su-
perconducting gap A(B) and T, decrease with increas-
ing field via A(B)/A(0) = T.(B)/T.(0) = /1 — B/Be2
[41]. In the low-field limit, we have B/Bo < AT./T.(0).
Therefore, the field-induced AF order should be propor-
tional to the field-induced reduction in T, consistent
with the data in Fig. 3f. Alternatively, the competition is
mesoscopic: phase-separation occurs with superconduct-
ing and non-superconducting, AF-ordered nano-regions
of length scale ~60 A. In this picture, the superconduct-
ing electrons do not directly contribute to the static AF
order, and superconductivity only affects the AF order
through a proximity effect. Here, one can imagine that
the field-induced non-superconducting vortices have in-
commensurate AF order, much like field-induced AF vor-
tices in some copper oxide superconductors [42]. This is
also consistent with the first-order-like AF to supercon-
ductivity transition with increasing z. Since our neutron
diffraction measurements of the bulk of the sample can-
not resolve superconducting from non-superconducting
parts of the sample, we find both scenarios are consis-
tent with our observation of short-range AF order with
superconductivity near optimal doping.
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