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We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein
condensed magnons in an insulator in direct contact with a conductor. While charge transfer is
prohibited across the interface, spin transport arises from the exchange coupling between insulator
and conductor spins. In normal insulator phase, spin transport is governed solely by the presence of
thermal and spin-diffusive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile,
gives rise to a temperature-independent condensate spin current. Depending on the thermodynamic
bias of the system, spin may flow in either direction across the interface, engendering the possibility
of a dynamical phase transition of magnons. We discuss experimental feasibility of observing a
BEC steady state (fomented by a spin Seebeck effect), which is contrasted to the more familiar
spin-transfer induced classical instabilities.
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Bose-Einstein condensation (BEC) has been observed
in a growing number of physical systems including
trapped ultracold atoms and molecules [1], semiconduc-
tor exciton polaritons [2], and microcavity photons [3]. In
magnetic insulators, a quasiequilibrated BEC of magnons
was created at room temperature by parametric pumping
[4], which is especially intriguing as it represents the pos-
sibility of phase transitions in spintronic devices. In the
case of short-lived bosonic excitations such as polaritons,
photons, and magnons, the system needs to be optically
pumped to exhibit spontaneous condensation [5].

In magnetic systems, Gilbert damping of magnons is
known to increase upon the introduction of an adjacent
conductor [6]: If the magnet is made to precess, conduc-
tion electrons may carry away spin upon colliding with
the interface separating conductor and insulator, tilting
the insulator’s magnetization toward its axis of preces-
sion. Known as spin pumping, this magnetic relaxation
process is reciprocal to spin-transfer torque [7, 8], by
which the angular momentum and energy can be pumped
back into the magnetic region [9]. We consider here the
consequences of these reciprocal interactions on an in-
sulator with inhomogeneous spatial fluctuations in the
magnetization, in particular a system of Bose-condensed
magnons similar to that mentioned above. In this Letter,
we construct rate equations for spin transfer between a
magnetic insulator and adjacent normal metal, and solve
for the time-dependent spin accumulation in the metal
and the phase behavior of the insulator. The main text
is supplemented with a discussion of the thermodynam-
ics of spin transfer in our system and proposal of possi-
ble methods by which to detect the predicted dynamical
phase transition.

Let us consider the insulating ferromagnet subjected
to a magnetic field B in the positive z direction and at-
tached to a metallic conductor, as sketched in Fig. 1.
Electrons in the ferromagnetic insulator are localized
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FIG. 1. The magnetic moments of insulator (left) atoms are
coupled to the itinerant electrons of an adjacent conductor
(right); an electron scatters inelastically off the interface, flip-
ping its spin and creating or annihilating a magnon in the
insulator. While coupling across the interface requires some
degree of overlap between electrons in the conductor and lo-
calized electron orbitals in the insulator, a net electron tun-
neling between the two subsystems is prohibited, so that only
spin density is transferred. The magnetic field in the insula-
tor, and hence static magnetization, point in the positive z di-
rection; for a negative gyromagnetic ratio the static spin den-
sity is therefore oriented in the −z direction, so that magnons
carry spin +~.

(typically in deep d or f orbitals) near atomics sites, pre-
cluding charge transport. The corresponding magnetic
moments constitute individual degrees of freedom, which
give rise to collective spin-wave excitations. Meanwhile,
(s-character) electrons in the metal are considered com-
pletely delocalized and noninteracting. We shall hence-
forth denote the ferromagnetic subsystem as “left” or L,
and the metallic conductor subsystem as “right” or R. As
a starting point, we treat them as uncoupled so that the
electronic state of the entire system is |m〉 = |mL〉⊗|mR〉.
|mL〉 is an eigenket of the linearized (i.e., noninteracting
magnon) left Hamiltonian ĤL; in other words, it is an
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element of the Fock space of Holstein-Primakoff (HP)
magnons, each indexed by the mode number q. The
magnon spectrum εq is gapped [min(εq) = εgs > 0] by
the presence of the magnetic field or anisotropy. Mean-
while, |mR〉 is an element of electron Fock space and
represents an antisymmetrized product of single-particle
states corresponding to quasiparticle Hamiltonian ĤR,
each indexed by orbital quantum number k and spin σ.

Itinerant electrons in the conductor are coupled across
the insulator-conductor interface to the magnetic mo-
ments of the insulator by a generic exchange interaction.
We suppose that this interaction V̂int can be phenomeno-
logically written in terms of creation (annihilation) oper-
ators ĉ†q (ĉq) for free HP magnons and creation (annihi-

lation) operators a†kσ (akσ) for conduction electrons:

V̂int =
∑
qkk′

Vqkk′ ĉqâ
†
k′↑âk↓ + H.c. , (1)

where σ =↑ or ↓ denote electron spin in the +z or −z
directions, respectively. Information about scattering off
of the static component of the insulator magnetization is
entirely contained in the conduction electron wavefunc-
tion ψkσ (x), which we consider to have a finite albeit ex-
ponentially vanishing extension into the insulator; more
specifically, ψkσ (x) are eigenstates of the total mean-field
Hamiltonian, including the interaction just on the inside
of the insulator between the evanescent conduction elec-
tron tails and the static z component of the insulator
magnetization. We approximate the static component
of the magnetization as spatially uniform in what fol-
lows. The effect on conduction electron scattering due to
the rotating magnetization component in the xy plane,
i.e., Eq. (1), which we consider small in comparison to
the static component, is responsible for spin pumping [6]
and spin-transfer torque [7, 8] and treated perturbatively
below.

The first term on the right-hand side of Eq. (1) de-
scribes a magnon (carrying spin up ~) annihilating in
the insulator to create a spin-down hole/spin-up elec-
tron pair in the conductor, while its Hermitian conjugate
(H.c.) corresponds to a reverse electron spin-flip scat-
tering off the insulator-conductor interface to create a
magnon. The scattering amplitude Vqkk′ is assumed to
be a full matrix element describing this process. No-
tice that while energy is exchanged in this interaction,
momentum is not generally conserved. Moreover, this
is not the only means by which conduction electrons
can exchange energy with the magnetic insulator: One
could, for example, write down an inelastic scattering
term of the form ∼ ĉ†q′ ĉqâ

†
k′σâkσ that conserves magnon

number (and therefore preserves the spin of the scatter-
ing conduction electron), which physically corresponds
to a deviation of the spin-conserving part of the Hamil-
tonian from its mean-field form. Since such a process
does not contribute to the transfer of the z component

of spin across the interface, however, it becomes irrele-
vant when temperatures are maintained by thermal reser-
voirs. It should also be noted that the presence of shape
anisotropy generally gives rise to elliptical magnons. The
elliptical magnon operators b̂q and b̂†q are linear combi-

nations of circular magnon operators ĉq and ĉ†q, so that

ĉq and ĉ†q no longer diagonalize ĤL. While our detailed
analysis in the following assumes circular magnons, a fi-
nite magnon eccentricity is not expected to significantly
alter our findings qualitatively.

The total Hamiltonian can be expanded as Ĥtot =
ĤL+ ĤR+ V̂int + ĤT + Ĥenv, where ĤT is a thermalizing
Hamiltonian that contains magnon-magnon interactions
and conduction electron-electron interactions, while Ĥenv

describes interactions between magnons and conduction
electrons with their environments: magnon-phonon cou-
pling, electron-phonon coupling, etc. Here we consider
dephasing effects significant enough that coherence be-
tween the left and right subsystems is destroyed and the
density matrix for the entire system is always in the form
ρ̂tot = ρ̂L ⊗ ρ̂R. We further assert, subject to sufficiently
fast thermalization in respective subsystems, that

Tr[ρ̂Râ
†
σkâσ′k′ ] = nF (βR(εk − µσ)) δkk′δσσ′ ,

Tr[ρ̂Lĉ
†
qĉq′ ] = nB (βL(εq − µL)) δqq′ , (2)

where nF (x) = (ex + 1)−1 and nB(x) = (ex − 1)−1 are
the (quasiequilibrium) Fermi-Dirac and Bose-Einstein
distributions, respectively, and εk (εq) is the electron
(magnon) spectrum. Because each subsystem maintains
internal equilibrium, magnons obey Bose-Einstein statis-
tics while conduction electrons are described by a Fermi-
Dirac distribution. Information about the allotment of
spin and energy between them is now contained in the
inverse temperatures βL and βR, the chemical potential
µσ for conduction electrons with spin σ, and the effective
magnon chemical potential µL (which does not have to
vanish in a pumped system). Note that µL ≤ εgs, where
εgs is the ground-state magnon energy; the magnons be-
come Bose-Einstein condensed when µL = εgs.

It is straightforward to calculate the spin current (per
interfacial area A) j flowing into the insulator from the
conductor in terms of temperatures and chemical poten-
tials to lowest order in V̂int using Fermi’s golden rule:

j =
1

A

d 〈SzL〉
dt

= jgs + jex, (3)

where the ground-state, jgs, and excited, jex, magnon
contributions are functions of the magnon chemical po-
tential µL, electron spin accumulation ∆µ = µ↑ − µ↓,
and their temperatures TL and TR. In the thermody-
namic limit, the spin-current density jgs, describing the
rate of flow of ground-state magnons into and out of
the insulator, is proportional to the number of ground-
state magnons Ngs per insulator volume VL, ngs =
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Ngs(µL, TL)/VL:

jgs = 2π |Vgs|2 (∆µ− εgs) g
2
Rngs . (4)

Here, gR is the Fermi-level density of states of conduction
electrons and

|Vgs|2 ≡
VL
A

(
VR
gR

)2 ∫
d3k

(2π)
3

d3k′

(2π)
3 |V0k′k|2

× δ (εk − εF ) δ (εk′ − εF ) , (5)

where εF is the Fermi energy (assumed to be much larger
than εgs and temperature) and VR volume of the conduc-
tor. Note that the current density jgs is only present in
the thermodynamic limit in BEC phase, µL = εgs. On
the other hand, the spin-current density jex (carrying
spin transfer via the excited magnon states) is present in
both normal and BEC phases and, after some manipula-
tions, can be written as

jex =2π

∫ ∞
εgs

dε |Vex(ε)|2 (∆µ− ε) g2
RgL(ε)

× [nB (βL(ε− µL))− nB (βR(ε−∆µ))] , (6)

in terms of the energy-dependent density of magnon
states gL(ε). The (relatively weakly) energy-dependent
quantity

|Vex(ε)|2 ≡ VL
AgL(ε)

(
VR
gR

)2 ∫
d3k

(2π)
3

d3k′

(2π)
3

d3q

(2π)
3 |Vqk′k|2

× δ (εk − εF ) δ (εk′ − εF ) δ (εq − ε) (7)

contains information about inelastic transition rates in-
volving excited magnons.

The dynamics of spin flow across the interface are
therefore determined by the sum of the condensate cur-
rent density jgs, which is determined by spin accumula-
tion in the conductor and the ground-state magnon en-
ergy εgs (and thus the applied magnetic field), and the
thermal current density jex, which depends on both tem-
perature and spin-potential biases. Note that sufficiently
large spin splitting ∆µ in the conductor could, in princi-
ple, drive spin density into the insulator until the required
density of magnons is attained and the system undergoes
Bose-Einstein condensation. In a recent experiment by
Sandweg et al. [10], spin pumping into a metal by mag-
netic insulator is driven by the presence of parametrically
excited magnons; in addition, a spin current between the
metal and insulator arises from a thermal gradient as dis-
cussed above. The authors of Ref. [10] made use of the
inverse spin Hall effect, wherein spin diffusion along a
metal strip produces detectable Hall signal. Reciprocally,
an electric current could be used to generate spin accu-
mulation on the surface of a metal via the spin Hall effect;
this surface spin accumulation may then drive magnons
into the insulator [11].
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FIG. 2. Behavior of ngs as predicted by the rate equation,
ṅgs = jtot/~dL = jc/~dL − ngs/τ . If jc had the sign opposite
to that shown in the figure, the crossing point τjc/~dL would
fall in the normal phase (ngs = 0), thus precluding a BEC
formation.

We henceforth focus on the regime where the temper-
atures of both the left and right subsystems are fixed so
that any energy gain or loss, independent of spin gain
or loss, is completely absorbed or resupplied by thermal
reservoirs. At fixed TL the density of excited magnons
nex becomes a monotonic function of µL ≤ εgs alone. Let
us further suppose that spin accumulation ∆µ in the right
reservoir is independent of spin diffusion from the insu-
lator and fixed. If the total density of magnons exceeds
the critical BEC density nc (corresponding to µL = εgs),
nex reaches and remains pinned at this value, nc, and
only ngs is free to vary. In BEC phase, then, the time
dependence of ngs is given by

ngs(t) =
τjc
~dL

+

[
ngs(0)− τjc

~dL

]
e−t/τ , (8)

where the excited magnon flux jc = jex(µL → εgs) is time
independent, as long as µL is anchored by the condensate
at εgs, ~/τ ≡ 2π |Vgs|2 (εgs −∆µ) g2

R/dL, and dL = VL/A
is the magnetic layer thickness. The behavior of the
Bose-Einstein condensed system thus falls into one of four
regimes, as depicted in Fig. 2. In the first, ∆µ > εgs (so
that τ−1 < 0) and ngs(0) > τjc/~dL, ngs grows exponen-
tially until saturating at a value ∼ Ms/µB (where Ms

is the magnetization of the ferromagnet and µB is the
Bohr magneton). In this case, magnon-magnon interac-
tions become important ultimately and the system must
be treated more carefully here. This is a realization of
the “swaser” (i.e., a spin-wave analog of a laser) put for-
ward in Ref. [8] and observed in the context most similar
to ours (in a magnetic insulator YIG) in Ref. [11]. In the
second regime, ∆µ > εgs but ngs(0) < τjc/~dL (requiring
jc < 0), ngs decreases towards zero, and the system en-
ters normal phase. The last two regimes (corresponding
to jc > 0 and jc < 0), which are of more interest to us,



4

0�1�2

1

2

1

Printed by Mathematica for Students

!1#!2#

1#

un
st
ab
le
#o
r#n

or
m
al
#

1#

normal#
phase#

BEC#

jc < 0

jc > 0

TL/TR

�R (�µ � ✏gs)

1 2 3 4 5

1

1

5

2

5

3

5

4

5

1

�t

!2#

n
tot

(t) /n
tot

(1)

n
ex

(t) /n
tot

(1)

normal#to#BEC#

n
gs

(t) /n
tot

(1)

0 2 4 6 8 10

1

5

2

5

3

5

4

5

1

�t

n
tot

(t) /n
tot

(0)

n
ex

(t) /n
tot

(1)

BEC#to#normal#

n
gs

(t) /n
tot

(0)

1# ntot (t) /ntot (0)

nex (t) /ntot (1)

ngs (t) /ntot (0)

ntot (t) /ntot (1)

nex (t) /ntot (1)

ngs (t) /ntot (1)

�t

�t

FIG. 3. When ∆µ < εgs, the steady-state phase is insensitive
to the initial condition for ngs, but depends on the tempera-
ture bias TL−TR and the difference ∆µ−εgs. As the splitting
∆µ increases, the critical temperature for TL increases until
it equals TR. Examples of time dependence in the normal
and BEC phase regions are shown in the upper and lower left
panels, respectively. When ∆µ > εgs, depending on the ini-
tial condition, the driven magnon system is either unstable or
relaxes towards the normal phase.

occur when spin splitting in the conductor is sufficiently
small that ∆µ < εgs and thus τ−1 > 0, as depicted in
Fig. 3. Here, the steady-state phase no longer depends
on the initial condition: When jc > 0, the magnons will
Bose-Einstein condense (lower half of the main panel in
Fig. 3), and if jc < 0, normal phase with ngs = 0 must
eventually be reached (upper half of the main panel in
Fig. 3).

In the normal phase (nex < nc), µL acquires time de-
pendence, and the rate of change of the total number
of magnons is ṅtot = ṅex = jex(t)/~dL. To illustrate
these dynamics in a specific example, we consider a sim-
ple model where the density of magnon states per unit
insulator volume VL has the form gL(ε) = GL(ε/εgs−1)w

(with w > 0 and GL a positive real number). In terms of
the polylogarithm function

Liw+1 (z) ≡ 1

Γw+1

∫ ∞
0

dx
xw

ex−lnz − 1
, (9)

the density of excited magnons becomes

nex = η(w)(βL, µL) ≡ GL
Γw+1Liw+1(zL)

βw+1
L εwgs

, (10)

where zL(βL, µL) ≡ eβL(µL−εgs) is the effective magnon
fugacity (with zL = 1 corresponding to a BEC). Assum-
ing for simplicity that Vex(ε) is energy independent and
equal to Vgs, one obtains from Eq. (6) an excited spin
current

jex =
~dL
τ

(
η

(w+1)
R − η(w+1)

L

1−∆µ/εgs
+ η

(w)
R − η(w)

L

)
, (11)

where η
(w)
L ≡ η(w)(βL, µL) and η

(w)
R ≡ η(w)(βR,∆µ).

In general, to find the spin accumulation in the normal
phase as a function of time, one must solve the rate equa-
tion for the magnon fugacity zL. At low temperatures,
(β−1
L , β−1

R ) � |εgs − ∆µ|, the first term in Eq. (11) can
be neglected, allowing for a simple solution to the excited
magnon density:

nex (t) = η
(w)
R +

[
nex(0)− η(w)

R

]
e−t/τ , (12)

provided nex < nc. If ∆µ < εgs, τ
−1 > 0, and nex de-

cays towards η
(w)
R , irrespective of its initial condition. If

η
(w)
R < nc, the insulator always remains in normal phase;

when η
(w)
R > nc, on the other hand, the magnons even-

tually Bose-Einstein condense, and the system is hence-
forth described by Eq. (8). Notice that the conditions

η
(w)
R ≷ nc are (in the spirit of the aforementioned low-

temperature approximation) equivalent to jc ≷ 0, which
are consistent with the conditions considered above for
the system to settle in the BEC or normal phase, respec-
tively, as t → ∞. The time dependence in the opposite
high-temperature regime, β−1

L , β−1
R � |εgs−∆µ|, is more

complicated than but in principle similar in behavior to
the low-temperature solution given by Eq. (12).

If the insulator temperature TL is left floating, the en-
ergy flow between the two subsystems would give rise to
the dynamics of TL (supposing for simplicity TR is still
fixed). In the most extreme case, the insulator is allowed
to exchange energy only with the conductor (and only
by the electron-magnon scattering discussed above, ne-
glecting phonon heat transfer), so changes in TL are dic-
tated by the rate at which energy is transferred across
the barrier along with spin. The coupled rate equa-
tions for energy and spin transfer can then be solved to
give time-dependent solutions to the temperature TL and
the ground and excited magnon densities, nex and ngs.
While this program is beyond our scope here, we may
expect a significantly more complex phase diagram, with
hysteretic features sensitive to the initial conditions and
reentrant phase behavior.

All of the relevant quantities may be readily inferred
from existing measurements. In particular, the squared
matrix element |Vgs|2 is directly related to the real spin-
mixing conductance (per unit area) g↑↓ by equating the
ground-state current density jgs for ∆µ = 0 with the ex-
pression for current pumped by a precessing magnetic
monodomain given in Ref. [6]: One obtains |Vgs|2 =
g↑↓/4π2sg2

R, where s is the ferromagnetic spin density
in units of ~. From this relation, the “magnon dwell
time” τd ≡ τ |∆µ=0 = 2πsdL/g

↑↓ωr and the effective
Gilbert damping constant α′ ≡ 1/2ωrτd = g↑↓/4πsdL
(corresponding to the interfacial, i.e., spin-pumping [6],
magnon decay) are expressed in terms of the spin-mixing
conductance. (ωr ≡ εgs/~ here is the ferromagnetic-
resonance frequency.) We use the term “Gilbert damp-
ing” here to refer to dynamical magnetization damping
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generally, including damping of inhomogeneous fluctua-
tions, in lieu of the alternative “Landau-Lifshitz” damp-
ing; while the two are mathematically equivalent, his-
torically the former has become generally favored over
the latter, and so we follow this convention. In YIG
films (4πMs ≈ 2 kG, g↑↓ ∼ 1014 cm−2 [11, 13]), the
spin-pumping Gilbert damping α′ dominates over the in-
trinsic Gilbert damping (α ∼ 10−4) below thicknesses
dL ∼ 100 nm. Theoretically predicted [14] and recently
measured [15] mixing conductance that is a factor of five
larger (g↑↓ ≈ 5 × 1014 cm−2) proportionately increases
the maximum film thickness. Having fixed α′ for a given
dL, the applied magnetic field can be chosen to be suffi-
ciently small that the timescale τth for magnon thermal-
ization is significantly less than the characteristic dwell
time τd = 1/2α′ωr. For example, taking τth ∼ 100 ns
for room-temperature YIG [4], the dwell time τ ∼ 1 µs
for damping α′ ∼ 10−4 corresponds to a frequency of
∼ 100 MHz or (effective) field of ∼ 10 G. At this field,
the condition for the formation of BEC (jc > 0) requires
a temperature bias ∆T = TR − TL ∼ εgs/kB of a few
mK for w = 1/2 (i.e., quadratic dispersion), in the ab-
sence of any spin bias (i.e., ∆µ = 0). In practice, for a
good thermal contact at the interface, this corresponds to
a temperature difference maintained across the magnon
correlation length, which we estimate by the magnetic ex-
change length (∼ 10 nm in YIG); such thermal gradients
have already been realized in experiment [16].

Considering that the classically unstable region (∆µ >
εgs) has already been realized in practice [11] in a Pt/YIG
bilayer spin-biased by the inverse spin Hall effect, and
the spin-caloritronic properties [12] are presently under
intense experimental scrutiny in such composites [10, 17],
the experimental observation of current-induced BEC
phase in Pt/YIG hybrids appears very feasible. YIG film
thickness larger than the characteristic de Broglie wave-
length of magnons (∼ 1 nm at room temperature us-
ing standard YIG parameters [18]) would justify a three-
dimensional treatment of BEC. A dL . 1 µm-thick YIG
film with Gilbert damping α . 10−4 like that employed
in Ref. [11] appears adequate to our ends, in order for
the spin-pumping efficiency α′ to be comparable to the
intrinsic Gilbert damping α.

We conclude that BEC phase can be established un-
der a steady-state transport condition when the ferro-
magnet is colder than the normal metal (thus facilitated
by a spin Seebeck effect [12]) and the spin accumulation
∆µ is slightly below the spin-transfer torque instability
(∆µ ∼ εgs), in our model. Implicit in our discussion is
the assumption that the magnon gas is dilute and can
therefore be treated as noninteracting, aside from ther-
malization effects. In reality, these interactions must be
accounted for, in order to fully understand the ensuing
dynamics of the magnon condensate. In such treatment,
spectral properties would be self-consistently modified
deep in the BEC phase, but the essential behavior of

the system close to the transition point could still be
addressed by the present theory. The emergent magnon
superfluid properties [19] due to their interactions are left
for a future work.
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