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The nature of magnetic order and transport properties near surfaces is a topic of great current
interest. Here we model metal-insulator interfaces with a multi-layer system governed by a tight-
binding Hamiltonian in which the interaction is non-zero on one set of adjacent planes and zero
on another. As the interface hybridization is tuned, magnetic and metallic properties undergo an
evolution that reflects the competition between anti-ferromagnetism and (Kondo) singlet formation
in a scenario similar to that occurring in heavy-fermion materials. For a few-layer system at in-
termediate hybridization, a Kondo insulating phase results where magnetic order and conductivity
are suppressed in all layers. As more insulating layers are added, magnetic order is restored in all
correlated layers except that at the interface. Residual signs of Kondo physics are however evident
in the bulk as a substantial reduction of the order parameter in the 2-3 layers immediately adjacent
to the interfacial one. We find no signature of long range magnetic order in the metallic layers.

PACS numbers: 71.10.Fd, 71.30.+h, 02.70.Uu

Sufficiently strong electronic correlations can cause the
formation of an insulating phase at commensurate fill-
ings. In general, there is a non-zero critical interaction
strength required for this “Mott transition”, so that two
uncoupled bands with different degrees of correlation can
coexist in metallic and insulating states. The behavior
of spectral functions and magnetic and superconducting
correlations, when interband hopping or interactions are
turned on, is a challenging theoretical problem. The cou-
pling could immediately force both bands to be in the
same (metallic or insulating) phase, or coexistence might
persist up to some critical degree of coupling [1, 2].

Closely related questions arise as clean interfaces be-
tween correlated materials become accessible [3]. Here
the role of different orbitals is played by the multiple
layers. It has been suggested that it might be possible to
“engineer” specific forms of spectral functions at the in-
terface by varying the materials partnered, as well as de-
sign other properties arising from electronic interactions
[4–6]. Experimental realizations include tunable 2D elec-
tron gases in oxide (SrTiO3/LaAlO3) heterostructures,
control of magnetoresistance at manganite interfaces [7],
novel magnetic properties at boundaries between cuprate
superconductors [8], and observation of magnetic proxim-
ity effect in Cu/CuO interfaces [9].

While the detailed chemistry of both multi-orbital and
layered materials is complex, an interesting starting point
for studying the qualitative properties of metal-insulator
interfaces is provided by the multi-layer Hubbard Hamil-
tonian. In this model, electrons have both intralayer and
interlayer hopping, as well as layer-dependent contact in-
teractions. The parameter space is large and in this paper
we focus on the simplest realization of the physics of a
metal-insulator interface in which all hybridizations are
chosen to be equal except the one at the interface; the

corresponding Hamiltonian is

Ĥ = −t
∑

〈ij〉,l,σ

(c†ilσcjlσ + h.c.)− µ
∑

i,l,σ

nilσ (1)

+
∑

i,l

Ul(nil↑ − 1/2)(nil↓ − 1/2)

−
∑

i,〈ll′〉,σ

tll′ (c
†
ilσcil′σ + h.c.).

Here c†i l σ(ci l σ) are creation (destruction) operators for
fermions of spin σ at site i in layer l. Each layer is
an N -site square lattice with a contact interaction Ul

chosen to be non zero, Ul = U , on “correlated” layers
l = 1, 2, 3, · · ·, and zero for an additional set of “metal-
lic” layers (l = −1,−2,−3, · · ·). Layers are arranged in
order of increasing l so that l = ±1 label the layers at the
interface. t and tll′ are the intra and interlayer nearest-
neighbor hybridizations. tll′ = t except at the interface
where it takes the value t−1,1 = V . We consider the case
where µ = 0 which, as a consequence of particle-hole sym-
metry, makes all layers half-filled, 〈nilσ〉 = 0.5. Recent
studies on similar models have found induced magnetic
order in the metal [10] and quasi-particle penetration in
paramagnetic Mott insulators [11].
Questions that arise in connection with Hamiltonian

(1) can be seen as extensions to those typically asked in
the context of heavy-Fermion materials [12] and concern,
at least at half-filling, the competition of magnetic order
and screening of local moments by conduction electrons.
Heavy-Fermion materials are modeled by Hamiltonian
(1), a bilayer with l = ±1, or by its strong coupling limit,
the Kondo-Heisenberg lattice, where charge fluctuations
on the correlated layers are neglected. The fundamental
issue we address here is how this competition is affected
as the two-layer case crosses over to the 3-dimensional
bulk-to-bulk interface.
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At small and large interface hybridization, the system
is adiabatically connected to, respectively, the V = 0
and V = ∞ limits. At small V the system is made up of
magnetically ordered layers weakly coupled to a metal.
At large V the central bilayer decouples and leaves the
external layers either metallic (l ≤ −2) or insulating,
with anti-ferromagnetic long range order (l ≥ +2).
Our results indicate that, for a four-layer system, two

interacting and two metallic sheets, and at intermedi-
ate interfacial hybridization, there exists an intervening
phase where loss of anti-ferromagnetic order is seen in
both correlated layers, +1 and +2, despite the fact that
the latter is not in direct contact with the metal. We
found that the electronic structure of the metal is also
profoundly affected and that the overall phase of the
quad-layer can be characterized as a Kondo insulator.
This is in contrast to our other finding when the inter-
action region becomes thicker than the metallic one: no
loss of magnetic order is found in layers beyond the one
immediately adjacent to the metal, regardless of the hy-
bridization strength V . In this case, upon increasing V ,
a direct transition between the small and large V regimes
results.
We addressed the physics of Hamiltonian (1) using de-

terminant Quantum Monte Carlo (DQMC) [13], an ex-
act, finite-T method for solving tight binding Hamilto-
nians on finite lattices. As we limit our calculations to
the perfectly half-filled case, there is no sign problem at
any temperature. Our results are averaged over several
independent simulations, and the error bars correspond
to the standard deviation of the mean. The imaginary-
time step is set to ∆τ = t/8. We present results for the
in-plane anti-ferromagnetic structure factor,

Saf
l ≡ 1

3N

∑

i,j

(−1)i+j
[

2〈σx
ilσ

x
jl〉+ 〈σz

ilσ
z
jl〉

]

, (2)

where σx
il = c†il↑cil↓ + c†il↓cil↑ and σz

il = c†il↑cil↑ − c†il↓cil↓,
and the local layer dependent spectral function Al(ω),
obtained by inverting the integral equation

Gl(τ) =

∫ +∞

−∞

dω
e−ωτ

1 + e−βω
Al(ω) (3)

via the maximum entropy method [14]. Gl(τ) =
∑

iσ〈T cilσ(τ) c†ilσ(0) 〉 is the quantity directly obtainable
by DQMC, and is averaged over 4 boundary conditions
corresponding to setting the hopping at the boundary of
each layer to ±t [15]. We also study the in-layer electri-
cal conductivity σl which is extracted from the current-
current correlation function

Λxx,l(k, τ) =
∑

i∈l

eik·i〈jx(i, τ)jx(0, 0)〉, (4)

with jx(r, 0) = it
∑

σ(c
†
r+x,σcr,σ−c†r+x,σcr,σ). We focused

on the intralayer contribution to Λxx,l only, assuming

that this correctly characterizes the conductive property
of each layer. σl is extracted using the approximate form
of the fluctuation-dissipation relation, valid at large β
and first discussed in [16],

Λxx,l(k = 0, τ = β/2) = πσl/β
2. (5)
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FIG. 1: (color online) (a) V -dependence of local moments,
ml =

∑

i
〈(σz

il)
2〉/N , on each layer, when two metallic layers

are coupled to two correlated ones. (b) Finite size scaling
of in-plane structure factor Saf

2 of the correlated layer (l =
2) farthest from the interface. For small V , there is long
range order in the thermodynamic limit which vanishes for
intermediate V and is recovered for large V . Saf

2 reaches its
ground state value at βt = 10.

To gain initial quantitative understanding of the evo-
lution of magnetic properties as V increases, we show,
in the top panel of Fig. 1, the evolution of local mo-
ments in a system of two metallic and two interacting
sheets. There are three regimes, most clearly evidenced
by the behavior of the metallic layer at the interface. At
V <∼ t local moments on layer −1 are essentially identi-
cal to those of a non-interacting system. In t <∼ V <∼ 4t
the moments monotonically increase and they saturate
at V ≃ 4t. The evolution of the other layers follows nat-
urally, with layer +1 merging with −1 at large V in a
phase that can be best characterized as a band insula-
tor made of weakly interacting dimers. Layer +2 has the
only non-monotonic evolution: magnetism is first sup-
pressed and then revived as the central dimer phase gets
increasingly stabilized.
We then use finite size scaling on Saf

2 to investigate
whether order in layer +2 is lost in the regime where
the moments are most suppressed. As shown in the
lower panel of Fig. 1, Saf

2 scales to a nonzero value for
both small and large interface hopping, V , when plotted
against the inverse linear system size 1/

√
N . For both

these regimes, there is long range order in the ground
state in the thermodynamic limit [17] as expected from
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FIG. 2: (color online) (a) Spectral function A2(ω) in corre-
lated layer l = 2. The Slater gap present at small V due to
AF order vanishes at intermediate V and reappears at larger
V . (b) In correlated layer l = 1, A1(ω) resembles A2(ω) but
unlike l = 2 the large V behavior is a broader gap associated
with the singlet energy scale. In both non-interacting layers
A

−1(ω) (c) and A
−2(ω) (d) a gap opens as V increases. At

large V , layer −2 recovers metallic properties while the singlet
gap is visible in layer −1.

the behavior of the local moments. However, in the inter-
mediate regime (starting at V ≥ t, in rough correspon-
dence to where loss of anti-ferromagnetic order happens
in the periodic Anderson model [18] and the bilayer Hub-
bard model [19]) loss of magnetic order is clearly observed
on layer +2 as well.

The most likely candidate mechanism for such loss of
order involves Kondo screening in both interacting lay-
ers. As the formation of a resonance in the single particle
spectral density is one of the hallmark of such process,
we plot, in Fig.2, the layer dependent spectral density
at T = t/30. We found that, at V = 2t, both interact-
ing layers are characterized by the presence of a Kondo
resonance. Due to the fact that we are focusing on a half-
filled system, the resonance is split as typically happens
for Kondo insulators.

We can gain further insight into the nature of this in-
termediate phase by looking at the behavior of the non-
interacting layers. Figure 3 shows the conductivity in
layers l = −1 and l = −2. At small hybridization, before
the loss of magnetic order, the conductivity increases as
T is lowered, showing these two sheets to be metallic.
In the intermediate regime t <∼ V <∼ 3t, the conductiv-
ity is strongly suppressed in both layers, and our inverse
temperature results suggest that these layers become in-
sulating around V = t in correspondence with the loss of
magnetic order.

From these results we can draw a few significant con-
clusions. First, that there is a Kondo proximity effect,
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FIG. 3: (color online) (a) In-plane conductivity σ
−1 in the

metallic layer l = −1 as a function of V , at several inverse
temperature β values. At intermediate V is small but non-
zero, but vanishes at V ≥ 4t due to dimer formation. (b) In-
plane conductivity σ

−2. This noninteracting layer becomes
insulating for intermediate hybridization, t ≤ V <

∼ 3t and
then recovers when the pairs are fully formed and pinned at
the interface.

as already observed using dynamical mean-field theory
on a similar model [11]. The novelty of our finding re-
sides in our treatment of non-local correlation. It allows
for a proper description of the competition between mag-
netic order and Kondo screening and shows the latter to
be effective in destroying order even on layers not di-
rectly coupled to the metal. Furthermore, states from
both metallic layers participate in the screening of local
moments as best evidenced by the drop in conductivity.
This situation is reminiscent of a long-range resonating
valence-bond state although it is unclear whether such a
description remains meaningful in the present context of
itinerant electrons.

The other kind of proximity effect that is expected in
such systems is due to the presence of the magnetically
ordered layers at smaller values of V . This would seem
a likely scenario, especially since the metallic phase lives
on layers with nested Fermi surfaces with infinite, T = 0,
anti-ferromagnetic susceptibility. Our calculations, how-
ever, do not find any significant penetration of magnetic
order in the metallic layers. Although we cannot exclude
that an extremely small order parameter might develop
at low T for some range of V , our finding suggests that
such an order would not survive the generic scenario of a
system with finite susceptibility. This result appears at
odds with recent experiments [9] finding evidence for an
anti-ferromagnetic proximity effect.

We now consider the question of how the competition
of Kondo screening and magnetic order is affected when
additional interacting layers l = 3, 4, · · · are present. The
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FIG. 4: (color online) (a) In-plane structure factors Saf

l as
functions of V for a system of four correlated layers coupled
to two metallic ones. At intermediate V antiferromagnetic
order is suppressed in every correlated layer. At large V the
order recovers in every correlated layer but the one at the
interface. (b) Finite-size scaling of the in-plane structure fac-
tors Saf

l for a system of six correlated layers coupled to two
metallic ones, at V = 2t. A systematic reduction of spin corre-
lations is evident as the metallic interface is approached from
the correlated side. Long range magnetic order is completely
destroyed in the correlated layer at the junction.

resulting system can be thought of describing the in-
terface between a thin metallic film and a bulk anti-
ferromagnetic Mott insulator or as a heterostructure
where the insulating domains are substantially thicker
than the metallic ones. A scan of Saf

l for different values
of V on a 6-layer cluster with 600 sites (top panel in Fig.
4) indicates that the most likely parameter regime to ob-
serve loss of magnetic order in layer 2 is for V/t ∈ [1, 2].

However, for V = 2t (lower panel of Fig. 4), we found
that, while Saf

1 does not extrapolate to a non-zero value,
the same does not happen for layers located deeper into
the interacting material i.e. l = 2, 3, 4, 5, 6 are all anti-
ferromagnetically ordered. This revival of magnetic long-
range order on layer +2 can be interpreted as a magnetic
proximity effect exerted by a bulk anti-ferromagnet on
those correlated layers subject to Kondo screening. Note
that a clear suppression of the order parameter is still
observed for l = 2 and several layers deeper in indicat-
ing coexistence of Kondo screening and magnetism (the
anomalously large value at l = 6 is a known phenomenon
where surface magnetic correlations are larger than the
bulk and has been widely explored experimentally [20]).

In conclusion, we have presented results on a model of
metal-insulator interface, the multilayer Hubbard Hamil-
tonian. Even within this simplified tight-binding model,
there are many possible choices of the intralayer and in-
terlayer hoppings. The dominant feature of the coupling

of the metal and strongly interacting material is a sup-
pression of magnetic order on the correlated side. We
did not observe the converse phenomenon, namely a sig-
nificant penetration of magnetism into the metal, as has
been noted in [10]. It is possible this difference arises from
the lower value of the on-site interaction, U/t = 4, used
here, compared to U/t ≈ 17 in [10]. Such large couplings
are difficult to treat in DQMC. The on-site interactions
studied here are relevant to the range of fitted values for
a number of interesting materials, e.g. CuO [21].

We showed that for thin insulating layers the Kondo
effect embraces correlated and metallic layers that are
not in direct contact with each other. Although such an
extended Kondo insulating phase does not require any
fine tuning, it is not a phase that permeates a large frac-
tion of the “phase space” for such systems. Here we have
shown, for instance, that forming Kondo singlets across
multiple layers is a process that can be defeated by mag-
netic proximity effect of layers farther from the interface.
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