
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Short-Time Spin Dynamics in Strongly Correlated Few-
Fermion Systems

Sebastiano Peotta, Davide Rossini, Pietro Silvi, G. Vignale, Rosario Fazio, and Marco Polini
Phys. Rev. Lett. 108, 245302 — Published 15 June 2012

DOI: 10.1103/PhysRevLett.108.245302

http://dx.doi.org/10.1103/PhysRevLett.108.245302


Short-time spin dynamics in strongly correlated few-fermion systems

Sebastiano Peotta,1 Davide Rossini,1 Pietro Silvi,2 G. Vignale,3 Rosario Fazio,1 and Marco Polini4

1NEST, Scuola Normale Superiore and Istituto di Nanoscienze-CNR, I-56126 Pisa, Italy
2International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy

3Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
4NEST, Istituto di Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, Italy

The non-equilibrium spin dynamics of a one-dimensional system of repulsively interacting fermions
is studied by means of density-matrix renormalization-group simulations. We focus on the short-time
decay of the oscillation amplitudes of the centers of mass of spin-up and spin-down fermions. Due
to many-body effects, the decay is found to evolve from quadratic to linear in time, and eventually
back to quadratic as the strength of the interaction increases. The characteristic rate of the decay
increases linearly with the strength of repulsion in the weak-coupling regime, while it is inversely
proportional to it in the strong-coupling regime. Our predictions can be tested in experiments on
tunable ultra-cold few-fermion systems in one-dimensional traps.
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Introduction. — In an electron liquid the motion of
one of the two spin species, e.g. in the presence of a
spin current, can drag along the other one because of
electron-electron interactions. This is the spin Coulomb
drag effect or simply the Spin Drag (SD) [1–3]. In elec-
tron transport SD can be described by a frictional force
proportional to the difference between the velocities of
the two populations and is described by a damping term
in the equation of motion for the time derivative of the
spin-resolved center-of-mass momentum. SD has been
observed [4, 5] in two-dimensional electron gases in semi-
conductor heterojunctions.

The concept of SD can be extended to other quan-
tum fluids with distinguishable species that can exchange
momentum due to mutual collisions. Ultracold atomic
gases [6] are clean systems in which SD can be observed
in a truly intrinsic regime [7–11]. Further, the inter-
action strength between atoms can be tuned at will by
employing Feshbach resonances [6].

This Letter is motivated by a recent pioneering ex-
periment [12] on SD in an equal mixture of two hy-
perfine states of 6Li atoms confined in a trap. The
authors of Ref. 12 measured independently the time-
dependent position of the centers of mass of “spin-up”
and “spin-down” particles starting from an initial con-
dition in which the two types of particles are grouped
in well-separated clouds. The experiment is performed
in the “unitarity limit” in which the strength of interac-
tions is the largest possible. At long times the separation
of the centers of mass decays exponentially to zero. By
measuring the time constant of this exponential decay
the SD coefficient is determined.

Besides providing information on SD in the strong cou-
pling regime, Ref. 12 provides a wealth of new data on
the short-time behavior – long before the SD regime is
attained. There it is found that the two clouds perform
several cycles of oscillation before settling at the bot-
tom of the trap. If interactions are sufficiently strong,

they reflect off each other several times before the inter-
diffusion process begins. This short-time regime of spin
dynamics, the short-time SD (STSD), constitutes the fo-
cus of the present Letter. We tackle it non-perturbatively
by the time-dependent density-matrix renormalization
group (tDMRG) method [13, 14]. This method is es-
sentially exact, its main limitation being the maximum
system size that we can handle [15]. Starting from an
initial condition similar to that of Ref. 12, we find that
the oscillation amplitudes of the centers of the spin clouds
decay in time quadratically for weak interactions, linearly
for intermediate interactions, and again quadratically for
very large interactions. Below we argue that this intrigu-
ing reentrant behavior is a many-body effect. Our pre-
dictions are amenable to experimental testing, since in
a recent work Serwane et al. [16] were able to trap few
fermions in a 1D geometry and to tune their mutual in-
teractions by means of a Feshbach resonance.

The model. — We consider a two-component fermion
system with repulsive short-range interactions in a 1D
trap. The system is prepared in the ground state
of two (spin-dependent) displaced harmonic potentials
[Fig. 1a)]. At time t = 0+ these external potentials are
suddenly turned off and the system evolves in presence of
a single harmonic confinement, according to the Fermi-
Hubbard (FH) Hamiltonian,

Ĥ = −J
∑
i,σ

(ĉ†i,σ ĉi+1,σ+H.c.)+U
∑
i

n̂i,↑n̂i,↓+
∑
i

Win̂i .

(1)

Here J is the inter-site hopping parameter, ĉ†i,σ (ĉi,σ)
creates (destroys) a fermion in the i-th site (i ∈ [1, L], L
being the total number of lattice sites), σ =↑, ↓ is a label
for a pseudospin-1/2 (hyperfine-state) degree of freedom,

U > 0 is the on-site repulsion, n̂i,σ = ĉ†i,σ ĉi,σ is the local
spin-resolved number operator, and n̂i = n̂i,↑+ n̂i,↓. The
third term on the r.h.s. of Eq. (1) represents an external
parabolic potential Wi = V2(i − L/2)2 of strength V2,
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corresponding to a frequency ω = 2
√
V2J/~.

We follow the time-evolution of the spin-resolved den-
sities 〈n̂i,σ(t)〉 on a time scale much smaller than the
spin equilibration time [17] and calculate the spin-

resolved centers of mass from XCM,σ(t) ≡ L−1∑L
i=1(i−

L/2)〈Ψ(t)|n̂i,σ|Ψ(t)〉.
Results and discussion. — In Fig. 1 we illustrate the

time evolution of the occupation numbers ni,σ(t) for a
system of N = 6 spin-up particles and N = 6 spin-down
particles, in a lattice with L = 240 sites. The harmonic
potential has a strength V2/J = (1/160)2, corresponding
to a harmonic oscillator length āho = (J/V2)1/4 ≈ 12.65,
in units of the lattice constant, and to a frequency ω =
J/(80~). These parameters have been used also for all
other plots and their choice yields minimal lattice effects
(see below) [18]. The data in Fig. 1 correspond to U/J =
5. In panel a) we illustrate the initial state, with two
non-overlapping clouds with opposite spins. Panels b)-f)
show the time evolution of this initial state. We highlight
two features: i) in panels b) and e) high-density regions
form near the center of the trap due to strong repulsive
interactions [12]; ii) in panels c), d), and f) we see how
the spin-up cloud (blue curve) drags along a substantial
fraction of down-spin atoms (red curve).

In Fig. 2a) we show the time evolution of spin-resolved
center-of-mass, XCM,σ(t), in the weak coupling regime,
U/J ≤ 0.05. In absence of the lattice, the center-of-mass
of each atomic cloud is decoupled from “internal” degrees
of freedom and should oscillate at the trap frequency, ω,
without decaying. This is confirmed by the data corre-
sponding to U/J = 0 in Fig. 2a) (dotted lines). No visible
damping effects appear within the time-scale of the plot,
since we have minimized lattice effects [19].

When U/J is finite the two clouds still go through each
other, but their motion is damped. Fig. 2b) reports the
maxima of the blue and red curves as a function of time,
for several different values of U/J ≤ 0.05. The amplitude
of the oscillations in Fig. 2a) decays quadratically in time.
This is because, in this regime, the center of mass of each
cloud is a harmonic oscillator weakly coupled to internal
degrees of freedom. The relevant excitation spectrum,
S(Ω), is sharply peaked about Ω ∼ ω. The position
of the peak determines the frequency of the oscillations
and the second moment of the spectrum determines the
quadratic decay of their amplitude. The quadratic de-
cay can be also verified analytically by means of time-
dependent perturbation theory – see Sect. II in Ref. 14.

We now discuss the strongly correlated regime, U/J �
1. The main results are summarized in Fig. 3. Dot-
ted lines in Fig. 3a) represent the exact time evolution
of the spin-resolved center-of-mass for U/J = ∞. In
this limit, the Hamiltonian in Eq. (1) maps onto [20]

Ĥ∞ = −JP̂∑i,σ(ĉ†i,σ ĉi+1,σ + H.c.)P̂ , where P̂ is a
Gutzwiller projector (that avoids double occupation of a

FIG. 1: (Color online) Time evolution of the site occupa-
tions ni,σ(t) for a system of twelve fermions at strong coupling
(U/J = 5). Panel a) Initial state: two clouds of atoms with
opposite spin (blue and red curves) are spatially separated
using two displaced harmonic potentials. Panels b)-f) Subse-
quent time evolution after the abrupt switch-off of these local
potentials. The two clouds are forced to propagate against
each other in presence of an overall harmonic confinement
of frequency ω. The parameter t̄ denotes time in units of
the period T = 2π/ω induced by the harmonic confinement.
Dashed lines indicate the initial spin-dependent displaced har-
monic traps [panel a)] and the overall harmonic trap for t > 0
[panels b)-f)], and are plotted as guides to the eye.

lattice site). Dotted lines have been obtained by applying
tDMRG to Ĥ∞. Notice that the centers of mass of the
two clouds behave practically like two classical particles
that bounce off each other quasi-elastically oscillating at
twice the trap frequency. The frequency doubling with
respect to Fig. 2a) is understandable as follows. Due to
strong repulsion, fermions of opposite spin are confined to
one half of the trap: effectively, only the antisymmetric
levels of the harmonic oscillator, whose energy separa-
tion is 2ω, are involved in the time evolution. A rather
complicated dynamical pattern, however, is present in
the time evolution of the spin-resolved site occupations
ni,σ(t) (see Fig. 1).

In Fig. 3b) we plot the amplitude of oscillations vs
time for 5 ≤ U/J ≤ 30. Remarkably they decay lin-
early. As mentioned in the Introduction, the quadratic-
to-linear crossover is a many-particle effect. One can in-
deed solve analytically the evolution dynamics for an in-
teracting system of two particles with antiparallel spin
in a harmonic potential. In that case, the time evo-
lution of XCM,σ follows the quadratic behavior seen in
Fig. 2b), even for strong interactions (see Sect. III of
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FIG. 2: (Color online) Panel a) Time evolution of the
spin-resolved center-of-mass XCM,σ(t) of a system of twelve
fermions in a harmonic potential. Solid lines refer to U/J =
0.02 while dotted lines to U/J = 0. Panel b) Positions of the
maxima of the amplitude of the center-of-mass oscillations as
functions of time t in units of T = 2π/ω. Different symbols
correspond to different interaction strengths. The tiny decay
in the non-interacting case is due to lattice effects. Solid lines
are parabolic fits, XCM,σ(t)|peak = X0 [1− (t/τstsd)2], where

X0 is the same for all values of U/J .

Ref. 14). With many particles, as the strength of the
interaction increases, the centers of mass of the clouds
become increasingly coupled to internal degrees of free-
dom. If N is sufficiently large, S(Ω) becomes featureless,
with a bandwidth of the order of ω. In this regime one
has the situation of a single degree of freedom (center of
mass) irreversibly transferring energy into a “bath” of mi-
croscopic degrees of freedom: accordingly, the amplitude
of the oscillations decays linearly in time as expected of
an ordinary damped oscillator.

These observations imply a non-trivial crossover in the
short-time dynamics of XCM,σ(t)|peak as a function of
the number of particles. In particular, as illustrated in
Figs. 5-8 of Ref. 14 (Sect. IV), we note the existence of
a time scale t?, depending on N and U/J , below which
the decay of the oscillation amplitudes is quadratic. The
value of t? decreases with increasing N and increases
with increasing U/J . More quantitatively, we have in-
vestigated such crossover by fitting numerical data at

FIG. 3: (Color online) Panel a) Same as in Fig. 2a) but
at strong coupling. Solid (dashed) lines refer to U/J = 20
(U/J = 5) while dotted lines to U/J = ∞. In the latter
case the oscillations have twice shorter periodicity than those
of non-interacting fermions. Note that they do not display
an appreciable decay on the time scale of the plot. Panel b)
Same as in Fig. 2b) but at strong coupling. Solid lines are fits
obtained by using Eq. (12) in Sect. IV of Ref. 14.

strong coupling with the “split-fit” formula in Eq. (12)
of Ref. 14, which contains τstsd and t? as fitting parame-
ters. This equation encodes a quadratic decay for t ≤ t?,
followed by a linear behavior for t > t?. From our anal-
ysis we conclude that the value of t? for N = 6 and
5 . U/J . 30 is much smaller than the period of oscilla-
tions. This explains why no quadratic behavior is seen in
Fig. 3b). From the numerical data at strong coupling, we
conclude that a linear decay in time of XCM,σ(t)|peak oc-
curs when the overlap between the two colliding clouds is
substantial, while a quadratic decay takes place initially
(for t < t?) when minor overlap occurs in the tails of the
clouds.

Our main results for the time scale τstsd associated
with STSD are summarized in Fig. 4. Here we report the
values of τ−1stsd used to produce the fits in Figs. 2b)-3b).
We clearly see that τ−1stsd vanishes linearly in the weak-
coupling U/J → 0 limit. This has to be contrasted with
the SD relaxation rate in a system with many degrees
of freedom at equilibrium: the latter is quadratic in the
coupling constant governing the strength of inter-particle
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FIG. 4: (Color online) Empty circles represent the inverse of the short-time spin-drag time constant, τ−1
stsd (in units of 1/T ), as

a function of the coupling U/J . These data have been extracted from the spin dynamics of the model (1) (quadratic fit at weak
coupling and “split-fit” procedure at strong coupling, see Ref. 14). In a wide range of coupling constants, 0.1 . U/J . 1, fittings
like the ones in Figs. 2b)-3b) do not work. We see that τ−1

stsd vanishes linearly in the weak-coupling regime (long-dashed line)
and behaves approximately like 1/U at strong coupling (solid line). The solid line is a power-law fit, i.e. 1/τstsd = A (U/J)−α,
with A ≈ 1.26/T and α ≈ 0.97. The empty triangles label τ−1

stsd as extracted from the spin dynamics of the effective model

(2). The short-dashed line is a power-law fit of the form 1/τstsd = B (U/J)−β , with B ≈ 0.7/T and β ≈ 0.91. While the two
exponents α and β are very similar, the proportionality constants A and B are slightly different. This discrepancy may be due
to the neglect of three-site terms [22] in Eq. (2). In the inset we show the same strong-coupling results in a log-log scale.

interactions (see e.g. Ref. 7). In the strong-coupling
limit τ−1stsd behaves approximately like 1/U . No analytical
results are available in this regime, even in a system with
many degrees of freedom at equilibrium. We emphasize
that, for all the data at U/J � 1 in Fig. 4, t? is within
the observation time of our simulations.

To check the robustness of our conclusions at strong
coupling, we study an effective “t-J” model [20, 21] which
approximates (1) for U/J � 1:

Ĥ′ = Ĥ∞ +
4J2

U

∑
i

(
Ŝi · Ŝi+1 −

n̂in̂i+1

4

)
+
∑
i

Win̂i ,

(2)

where Ŝi =
∑
α ĉ
†
i,α(σαβ/2)ĉi,β is the spin operator (σ

being a three-dimensional vector of Pauli matrices) [22].
When U/J � 1 such model is much easier to simulate
than the original FH model. Employing Eq. (2) we have
discovered that, for a fixed value of N , the amplitude of
the oscillations decays quadratically in time when U/J
is sufficiently large. This is shown in Fig. 5 of Ref. 14.
In other words, as mentioned in the Introduction, the
quadratic dependence on time of the decay of the oscilla-
tion amplitudes displays a reentrant behavior pertaining
to the many-particle problem. In Fig. 4 we report the re-
sults for the inverse STSD time constant of the model (2)
(empty triangles), which agree qualitatively with those
based on the full FH model.

In summary, we studied short-time spin-density oscil-
lations in a strongly-interacting 1D few-fermion system.
We discovered that the decay in the oscillation ampli-
tudes goes from quadratic to linear back to quadratic in
time as the interaction strength increases from zero to

infinity. The inverses of the properly-defined time con-
stants depend on the strength of inter-particle interac-
tions in a way that was unpredictable on the basis of our
knowledge of the same phenomenon in many-particle sys-
tems near equilibrium. Our predictions can be tested by
studying the damping of spin-dipole oscillations in few-
fermion systems [16].

We acknowledge financial support by the EU FP7
Grants 248629-SOLID and 234970-NANOCTM and by
the NSF under Grant No. DMR-1104788.

[1] I. D’Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000);
ibid. 65, 085109 (2002); ibid. 68, 045307 (2003).

[2] K. Flensberg, T.S. Jensen, and N.A. Mortensen, Phys.
Rev. B 64, 245308 (2001).

[3] For a short review see M. Polini and G. Vignale, Physics
2, 87 (2009).

[4] C.P. Weber et al., Nature 437, 1330 (2005).
[5] L. Yang et al., Nature Phys. 8, 153 (2012).
[6] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.

80, 885 (2008).
[7] M. Polini and G. Vignale, Phys. Rev. Lett. 98, 266403

(2007); D. Rainis et al., Phys. Rev. B 77, 035113 (2008).
[8] Gao Xianlong et al., Phys. Rev. Lett. 101, 206402 (2008).
[9] G.M. Bruun et al., Phys. Rev. Lett. 100, 240406 (2008).

[10] R.A. Duine et al., Phys. Rev. Lett. 104, 220403 (2010).
[11] R.A. Duine and H.T.C. Stoof, Phys. Rev. Lett. 103,

170401 (2009); H.J. van Driel, R.A. Duine, and H.T.C.
Stoof, ibid. 105, 155301 (2010).

[12] A. Sommer et al., Nature 472, 201 (2011).
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