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Abstract

Predictions are developed for gradients and profiles of the electron density and temperature in

tokamak H-mode pedestals that are in transport quasi-equilibrium. They are based on assuming

paleoclassical processes provide the irreducible minimum radial plasma transport and dominate in

the steep gradient regions of pedestals. The predictions agree (within a factor of about two) with

properties of a number of pedestal experimental results.
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Plasmas with large gradients in their edge pedestals (outer few % of the plasma radius)

occur in fusion-relevant high- (H-) confinement mode tokamak plasmas. Substantial pedestal

heights are critical [1] for achieving high fusion power in ITER [2]. Plasma transport and

its role in H-mode pedestals are not presently understood.

An extensive study of plasma transport in a DIII-D H-mode pedestal [3] indicated pale-

oclassical plasma transport [4, 5] may play a significant role there. This paper develops and

tests the fundamental predictions of a paleoclassical-based model for the “pedestal struc-

ture” in the edge of H-mode plasmas. A comprehensive description, more predictions and

implications of the model are presented in [6]. Additional tests are presented in [6–8].

The model predictions will be illustrated by comparison to plasma transport quasi-

equilibrium profiles in the edge of the low collisionality DIII-D tokamak discharge 98889

[3] shown in Fig. 1. The radial coordinate ρN ≡ ρ/a is the normalized minor radius in terms

of the toroidal-flux-based radial coordinate ρ (m). The separatrix is at ρN =1 (a'0.77 m)

in this lower single null diverted plasma. Key edge plasma regions are the core (I) and steep

gradient parts (II and III) of the pedestal.

The key assumption used in this model is that paleoclassical processes dominate all

plasma transport channels in the steep gradient region of the pedestal. While fluctuations

are usually present in pedestals and may peak where the plasma pressure gradient is largest,

they will be assumed to be too small to induce the dominant plasma transport in regions II

and III.

The initial paleoclassical papers [4, 5] were based on a key hypothesis that charged par-

ticles diffuse radially along with thin annuli of poloidal magnetic flux in resistive, current-
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FIG. 1. Electron density ne (×1020 m−3) and temperature Te (keV) profiles in edge of DIII-D

discharge 98889 [3]. Pedestal top is at ρtop = 0.96 a and its mid-point is at ρmid = 0.98 a.
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carrying toroidal plasmas. That is, they diffuse radially with the resistivity-induced mag-

netic field diffusivity Dη = η/µ0. This hypothesis was later shown [9] to result from trans-

forming the drift-kinetic equation from laboratory to poloidal flux coordinates, upon which

Grad-Shafranov equilibria, neoclassical transport theory and gyrokinetic-based anomalous

transport analyses are based. A Comment [10] on [9] asserted the effects “appear to lack a

systematic basis.” The Response [11] provided a systematic multiple-time-scale analysis of

electron guiding center motion that produces these effects.

Paleoclassical electron heat transport approximately agrees with results from many

ohmic-level [Te <∼ B(T)2/3a(m)1/2 keV] toroidal plasmas [12] (tokamaks, STs, RFPs, sphero-

maks), in electron-cyclotron (EC) heated plasmas in RTP [13] and in tokamak H-mode

pedestals [3, 12]. These results are consistent with it providing the minimum level of

electron heat transport.

The fundamental paleoclassical parameter is [5, 11, 14] the poloidal magnetic flux dif-

fusivity Dη ≡ ηnc
‖ /µ0 induced by the parallel neoclassical resistivity ηnc

‖ . An approximate

formula for Dη (m2 s−1) in typical H-mode pedestals in which Zeff ≡
∑

i niZ
2
i /ne ' 1.5–3

can be developed [6] that includes parallel friction (Spitzer) and trapped-particle-induced

viscosity (ft, ν∗e) effects:

Dη '
1300Zeff

[Te(eV)]3/2

(
0.41 +

1.2(ft/fc)/(1+νe/ωte)

1 + ν
1/2
∗e + 2 ν∗e

)
. (1)

Here, fc is the flow-weighted fraction [15] of circulating (untrapped) particles with Padé

approximate [16]

fc '
(1− ε2)−1/2 (1− ε)2

1 + 1.46 ε1/2 + 0.2 ε

ε�1' 1− 1.46 ε1/2 +O(ε), (2)

in which ε ≡ (Bmax−Bmin)/(Bmax +Bmin) ' rM/R0 is the local magnetic inverse aspect

ratio. The fraction of trapped particles is ft ≡ 1 − fc. Finally, the neoclassical electron

collisionality parameter is in general [6, 15, 17]

ν∗e ≡
(ft/fc) νe
2.92 vTe

〈B2〉/R0q

〈(b̂ ·∇B)2〉
' (ft/fc)R0q

1.46 ε2λe

ε�1' νe
ε3/2ωte

, (3)

in which the electron Coulomb collision length is

λe ≡
vTe
νe
' 1.3×1016 [Te(eV)] 2

Zeff ne(m−3)
m. (4)
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TABLE I. Key parameters for the DIII-D 98889 pedestal [3].

Parameter at ρtop at ρmid at ρsep = a

Te(eV) 666 352 89

ne/1019m−3 2.76 1.77 0.77

Zeff 2.83 2.6 1.9

ε ≡ rM/R0 0.347 0.352 0.356

ft/fc 3.24 3.31 3.38

λe(m) 74 35 7

R0q/λe ≡ νe/ωte 0.10 0.21 ∞

ν∗e 1.9 3.9 ∞

Dη ≡ ηnc
‖ /µ0 (m2 s−1) 0.21 0.36 1.2

Table I provides values of these key parameters for the data shown in Fig. 1 for which

rM(ρmid) ' 0.6 m, R0 ' 1.7 m, and the “safety factor” q(ρmid) ' 4.5. On the separatrix

q → ∞. Because the fraction of trapped particles is large in the pedestal [ft(ρmid) ' 0.77,

fc(ρmid) ' 0.23], the relevant electron collisionality parameter ν∗e(ρmid) ' 3.9 is a factor of

about 4 larger than the result from the usual low aspect ratio formula νe/ε
3/2ωte, which is 1.0

at ρmid. Thus, because of the low aspect ratio (1/ε ∼ 2.8 in DIII-D), pedestal plasmas are

usually not in the low collisionality “banana” regime; rather, they are typically in the higher

collisionality plateau or even Pfirsch-Schlüter regimes. Electron viscosity (ft, ν∗e) effects are

significant and vary in the pedestal; the ν∗e-dependent term in (1) increases from 0 at the

separatrix to 0.3 at ρmid and 0.56 at ρtop.

In plasma transport quasi-equilibria shortly after (>∼ 10 ms) an L-H transition or just

before an edge-localized-mode (ELM) such as those discussed in [3, 18], the “steady-state”

(∂/∂t→ 0) flux-surface-averaged (FSA) density transport equation is [14]

〈∇ ·Γ〉 ≡ 1

V ′
d

dρ
(V ′Γ) = 〈Sn〉. (5)

Here, Γ is the density flux, Γ ≡ 〈Γ ·∇ρ〉 the FSA radial flux, 〈Sn〉 the net FSA density

source and V ′ ≡ dV/dρ (m2) where V (ρ) (m3) is the volume of the ρ flux surface.

The FSA paleoclassical radial density flux is [14]

Γpc = − 1

V ′
d

dρ
(V ′D̄η n) = − D̄η

dn

dρ
+ nVpinch. (6)
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The Γpc includes a pinch flux, which results from particle guiding centers only diffusing

radially because the O{ε2} Fokker-Planck drag-type term is negligible [5, 11]. The pinch

flow velocity (m s−1) is usually inward (i.e., < 0); its definition is

Vpinch ≡ −
1

V ′
d

dρ
(V ′D̄η). (7)

Here, the geometric factor [5] a2/ā2 ≡ 〈|∇ρ|2/R2〉/〈R−2〉 (' 1.6 for the 98889 pedestal [3])

has been incorporated in the magnetic field diffusivity for simplicity of notation:

D̄η ≡
a2

ā2
Dη, geometrically effective Dη, m2 s−1. (8)

Assuming the total density flux Γ is just Γpc, multiplying (5) by dV ≡ V ′dρ and inte-

grating radially from the ρ flux surface to the separatrix (ρsep ≡ a) yields an equation for

the radial flow of charged particles (s−1):

−
[
d

dρ
(V ′D̄η n)

]
ρ

= Ṅ(ρ). (9)

Here, Ṅ(ρ) is the number of particles flowing across the ρ surface per second: Ṅ(ρ) ≡

Ṅ(a) −
∫ a
ρ
dρ̂ V ′(ρ̂) 〈Sn(ρ̂)〉.

Deuteron and impurity (e.g., carbon) densities in pedestals are influenced by complicated

differing source, ionization and neoclassical pinch-type effects. Thus, the simpler electron

density equation is solved. Integrating (9) radially from ρ to a reference radius ρref yields

ne(ρ) D̄η(ρ)V ′(ρ) = [ne D̄η V
′]ρref +

∫ ρref

ρ

dρ̂ Ṅe(ρ̂). (10)

The density source effect is often small. For example, at the mid-point of the 98889

pedestal [3] the relative magnitude of the fueling between ρmid = 0.98 a and ρref → a

is <∼ 0.02 a Ṅe(a)/[neD̄ηV
′]ρmid

' 0.07 since in 98889 [3] Ṅe(a) ' 2× 1021 s−1 and V ′ '

(ρ/a)(43.4) m2.

Neglecting fueling and variations in V ′, a2/ā2, (10) becomes

ne(ρ)Dη(ρ) ' [neDη]ρref = constant. (11)

This relation predicts ne(ρ) ∝ 1/Dη(ρ); i.e., ne increases strongly from the separatrix inward

as Dη ∝ 1/T
3/2
e decreases. It also implies the top of the ne profile occurs where Te “saturates”

(for ρ <∼ ρtop = 0.96 a in Fig. 1). If Dη were spatially constant, (11) would predict ne(ρ) =

constant in the pedestal, i.e., no density pedestal.
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FIG. 2. Comparison of paleoclassical-based pedestal structure model predictions (red) to SOLPS

interpretive modeling [7] (black) for 4 carbon transport models that result in slightly different Zeff

profiles for the DIII-D 98889 pedestal [3]: a) effective electron heat diffusivity χe and b) density

ne profiles.

The relation in (11) indicates the density profile that produces a small net electron

paleoclassical density flux Γpc
e in (6) — by nearly balancing the outward diffusive density

flux with a large inward pinch flux. This scenario is precisely what was concluded from a

pioneering interpretive analysis [19] of the ion density pinch and diffusivity in the 98889

pedestal; paleoclassical predictions for Dη and Vpinch are consistent with the values and

profiles obtained with that analysis (see Figs. 25, 26 in [3]).

Differentiating (11) with respect to ρ yields a lowest order prediction for the electron

density gradient scale length: 1/Lne = 1/Lη in which 1/Lne ≡ − d lnne/dρ and 1/Lη ≡

d lnDη/dρ. The tanh fit [3] “width” of the density pedestal is approximately 2Lne . At

ρmid in 98889 Lη/a ' 0.02 is slightly smaller than the experimentally-inferred width of

Lexp
ne
/a ' 0.0285 (see Fig. 9b in [3]).

The magnetic field diffusivity Dη varies as Zeff/T
3/2
e times a function of the electron col-

lisionality parameter ν∗e(Te, Zeff , ne). Thus, it depends strongly on the yet to be determined

Te profile. Since Dη depends mainly on Te, the ne and Te profiles should be “aligned” (i.e.,

strongly correlated). Edge fueling decreases the pedestal density “width” slightly [20] while

additional collision- or turbulence-induced density transport can increase it [6].

Figure 2b shows the ne profile predicted by (11) (here normalized to the average of the

pedestal experimental data) compares favorably to the experimental ne profile in 98889. The

ne profiles are compared instead of effective density diffusivities Deff ∼ Ṅ/[V ′(−dne/dρ)]

because the diffusion and pinch terms in (6) nearly cancel.
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A comprehensive study [8] of npc
e (ρmid) predicted by (10) with ρref = a using the DIII-D

pedestal database (> 200 time slices) found npc
e (ρmid)/nexp

e (ρmid) ' 2.1 ± 0.7 with a corre-

lation coefficient of 0.89. Fueling effects were only about 5%. While this pedestal structure

model provided the minimum density transport, the average overprediction of ne(ρmid) by

a factor of about two indicates some modest additional density transport apparently occurs

in most DIII-D pedestals.

The steady-state FSA electron energy transport equation analogous to (5) for the density

is [5, 14]

〈∇ · qpc
e 〉 +

1

V ′
d

dρ
[V ′(Υe +

5

2
Te Γ)] = Qnet

e . (12)

Here, qpc
e is the paleoclassical electron heat flux, Υe ≡ 〈qe ·∇ρ〉 is the FSA of any additional

radial electron heat fluxes and Qnet
e is the net FSA electron energy source.

The FSA paleoclassical radial electron heat transport operator is not in standard form,

but is (Eq. (142) in [5])

〈∇· qpc
e 〉 = −M+1

V ′
d2

dρ2

(
V ′D̄η

3

2
neTe

)
, W m−3. (13)

The M factor is caused by helically-resonant radial electron heat transport contributions [5]

near medium order rational surfaces. In H-mode pedestals it is roughly M ' λe/(πR0q) [5],

which in the 98889 pedestal is about 3.1 at ρtop, 1.5 at ρmid and zero at a [6].

Multiplying (12) by V ′/(M +1), neglecting other electron heat fluxes in the pedestal,

integrating radially from ρ to a and using (9) for − [(d/dρ)(V ′D̄ηne)]ρ yields an equation for

electron heat flow (W):

− [V ′D̄η ne]
3

2

dTe
dρ

+
3

2
ṄeTe = Pe(ρ). (14)

Here, Pe(ρ) is an effective conductive electron heat flow (W) through the ρ flux surface:

Pe(ρ) ≡ Pe(a)−
∫ a

ρ

dρ̂ V ′(ρ̂)

M(ρ̂) + 1

[
Qnet
e −

1

V ′
d

dρ

(
V ′

5

2
TeΓ

)]
ρ̂

. (15)

This is the electron heat flow through the separatrix Pe(a) ≡ − [(d/dρ)(V ′D̄η(3/2)neTe)]a

(since M → 0 at the separatrix) minus typically small [3] corrections due to electron heating

Qnet
e and convective electron heat flow between ρ and a. The Ṅe fueling term in (14) is often

negligible compared to conductive electron heat flow through the pedestal: (3/2)ṄeTe/Pe <∼
0.026 in the 98889 pedestal [3] where Pe(ρmid) ' 1.65×106 W.
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Neglecting electron heat losses due to the fueling Ṅe, the predicted electron temperature

gradient is thus

− dTe
dρ

=
Pe

(3/2) [V ′D̄η ne]
' spatially constant. (16)

The gradient of Te is predicted to be approximately constant in the pedestal’s steep gradient

region (II and III in Fig. 1) because the conductive electron heat flow is often nearly constant

in the pedestal (i.e., Pe(ρ) ' Pe(a) — see Figs. 4a and 5a in [3]) and from (11) [V ′D̄η ne] is

predicted to be nearly constant in H-mode pedestals. The Te profiles in tokamak H-mode

plasmas frequently exhibit roughly spatially constant Te gradients in the steep gradient

region of their pedestals, e.g., as in Fig. 1; however, significant measurement error bars

prevent definitive conclusions about this prediction’s veracity.

Dividing (16) by Te and multiplying by a yields a prediction for the normalized Te

gradient scale length at any ρ in the pedestal steep gradient region (II, III): LTe/a ≡

(− a d lnTe/dρ)−1 = (3/2) [V ′D̄ηne]Te/(aPe). At the mid-point ρmid of the 98889 pedestal,

this predicts [LTe/a]ρmid
' 0.029 compared to the experimentally-inferred width of [LTe/a]exp

ρmid
'

0.02 (see Fig. 9b in [3]).

Using the dTe/dρ prediction in (16), in the pedestal the effective electron heat diffusivity

is (Eq. (13) in [3])

χpc
e eff ≡

Pe
V ′〈|∇ρ|2 〉(−nedTe/dρ)

=
a2/ā2

〈|∇ρ|2〉
3

2
Dη. (17)

In the steep gradient region of the 98889 pedestal, a2/ā2 ' 1.6 and 〈|∇ρ|2〉 ' 2; thus, the

model prediction is that χpc
e eff ' 1.2Dη there. This χpc

e eff prediction in the pedestal region is

different from the usual local paleoclassical estimate [5] of χpc
e ' (3/2)(M+1)Dη because of

the non-standard form of the paleoclassical electron heat transport operator shown in (13)

and because there is very little local electron heating in the pedestal — electron heat mostly

just flows radially through the pedestal.

Figure 2a shows the pedestal structure model prediction in (17) agrees well with the χe

profile in the pedestal steep gradient region (II and III in Figs. 1,2). The electron heat

transport is apparently “anomalous” from the pedestal top inward (i.e., for ρN < 0.96, I in

Figs. 1,2).

Similar modeling results were obtained [7] for the ne and χe profiles using this model

for plasmas in NSTX without and with lithium-coated plasma-facing components, which

strongly modified the pedestal carbon density and Zeff profiles in the pedestal. In those
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pedestals ft/fc ' 0.93/0.07 ∼ 13 is very large. No anomalous electron heat transport was

needed for the case with lithium in to ΨN ' 0.82 (see Fig. 13a in [7]).

A comprehensive study [8] of the dT pc
e /dρ predicted by (16) using the DIII-D pedestal

database (> 200 time slices) found [(dT pc
e /dρ)/(dT exp

e /dρ)]ρmid
' 1.7± 1.1 with a correlation

coefficient of 0.55. Thus, the minimum level of Te transport used in obtaining (16) is within

experimental uncertainties; but additional electron heat transport is apparently operative

at high βp and low ν∗e [8].

Only a small anomalous Dan is required to reduce the pedestal ne gradient while a much

larger χan
e is required to reduce the pedestal Te gradient [6]. The Deff at ρmid in 98889 can

be estimated two ways: from the Ṅe source, Deff ' 0.02–0.05 m2 s−1 (see Fig. 24 in [3]), and

from what is needed [6] to obtain Lexp
ne

, Deff ∼ 0.12 m2 s−1. At ρmid in the 98889 pedestal

Dan >∼ 0.02–0.12 m2 s−1 [3, 6] can modify the ne gradient while Te profile effects are small

unless [6] χan
e
>∼ [(a2/ā2)/〈|∇ρ|2〉]χpc

e ∼ 1 m2 s−1. This typical order of magnitude greater

sensitivity to anomalous density transport than to electron heat transport may provide

an interpretation for ELM-free EHO-induced Quiescent H- (QH-) modes in DIII-D [21]

and EDA H-modes in C-Mod [22] that have quasi-coherent magnetic fluctuations in their

pedestals. Also, it provides a possible interpretation for the C-Mod I-mode regime [22, 23]

in which the ne profile has no edge transport barrier or pedestal (i.e., is L-mode like) but the

Te profile exhibits a normal H-mode-like pedestal in the presence of weakly coherent high

frequency modes.

Paleoclassical processes apparently provide the minimum level of ne and Te transport in

pedestals. They are the basis for the pedestal structure model developed and tested against

experimental data in this paper. The new paradigms posited by this pedestal structure

model are: 1) the electron temperature gradient in the pedestal increases to (16) so the

large electron heat flux from the core can be carried through the pedestal via paleoclassical

radial electron heat transport; and 2) the pedestal density profile adjusts to (11) to minimize

the net paleoclassical density transport through the pedestal.

The authors are grateful to the co-authors in [3], especially R.J. Groebner and T.H. Os-
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