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Waveguiding at the edge of a three-dimensional photonic crystal
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Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We find that electromagnetic waves can be guided at the edge ofa three-dimensional photonic crystal in air.
When the waveguide is defined by the intersection of two surface planes, the edge modes are associated with the
corresponding surface bands. A simple cell counting approach is presented to describe the periodic evolution of
the system with interesting interplays among edge, surfaceand bulk states.

An electron can be bounded in the bulk (3D), surface (2D),
edge (1D)[1] or corner (0D) of a three-dimensional (3D) elec-
tronic crystal in vacuum. But a photon doesn’t see vacuum as
a potential barrier as an electron does. At the vacuum or air
interface, a photonic mode can be bounded (having infinite
lifetime) if all its wavevectors are larger in amplitude than
its vacuum wavevector (the total-internal-reflection require-
ment). This condition cannot be satisfied for zero-dimensional
(0D) cavity-type modes whose mode extension is finite in all
spatial directions. Exposed to air, 1D waveguide-type modes
are thus the bound states of the lowest dimension in photon-
ics. In the context of photonic crystals (PhCs)[2] in air, in-
terfacial bound states have been found to exist at the edges
of 2D PhCs[3] and at the surfaces[4, 5] of 3D PhCs. These
two types of bound states are both reductions by one dimen-
sion from their bulk states. Similarly, a plasmonic wedge
mode[6, 7] (that is intrinsically lossy) is also a reductionby
one dimension from its 2D states, since there are no bulk elec-
tromagnetic modes in metals where the dielectric constant is
negative. In contrast, we present here the 1D edge mode of
3D PhCs; it is a reduction by two dimensions from 3D bulk
through 2D surfaces: this phenomenon has thus far not been
explored. Tuning the surface terminations of a 3D PhC edge-
structure can uniquely lead to photonic states whose dimen-
sionality evolves through all three dimensions: to and from
bulk, surface and edge modes. In addition, recent develop-
ments of nano-fabrication[8–11] are bringing 3D PhC devices
closer to realization. In any finite-sized device applications,
the existence of not only the known 2D surface states but also
the 1D edge states should be taken into account during the de-
sign. Last but not the least, the potential connection between
the topologically protected edge states and the gapped surface
or bulk [12–15] is another interesting aspect that motivates us
for this study. In this letter, we present a systematic studyof
the 1D edge modes of a 3D PhC in air; these results can po-
tentially stimulate additional design rules for 3D PhC devices,
novel waveguiding schemes and new “topological insulators”
in photonics.

In order to confine an electromagnetic mode at a PhC edge
in air, it should have a decay solution in bulk, surface and
air. This requires a simultaneous bulk and surface gap un-
derneath the light-line. First, we adopt the diamond lattice
shown in Fig. 1(a), which has the largest bandgap known so
far[16, 17]. Furthermore, most of the popular 3D PhC struc-
tures are diamond-like[18] and the properties of their surface
states[2, 4] have been studied. Second, we pick〈110〉[23] as
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FIG. 1: (a) Illustration of a diamond lattice. The cubic unitcell of
lengtha is outlined in blue and the fcc primitive cell is outlined in
red. Two (111) surfaces of equivalent termination parametersτ1 = 0
andτ1 = 1 are shown in yellow and green. They lie on the end faces
of the fcc primitive cell connected by~a3. The (111) surface ofτ2 = 1
is also shown in green. Any of the two intersecting planes define
the [110] edge along~a1. v̂ (≡ ~v

|~v| ) represents a unit vector along~v.

(b) The projected bandstructure of the{111} surfaces of the inverse
diamond PhC in air. The{111} surfaces, containing aC3v symmetry,
have a triangular lattice of lattice constanta/

√
2. The brown area is

the projected bulk modes. The light-cone is shaded in transparent
gray. The irreducible BZ is shown as an inset.Γ-K’ is the irreducible
BZ of the edge waveguide along the〈110〉 directions.

the directions for waveguiding. It has the shortest periodic-
ity (a/

√
2) and thus provides the longest Brillouin zone(BZ)

length underneath the light-line.〈110〉 waveguides can be de-
fined by any two surfaces intersecting along those directions.
We choose two of the{111} surfaces for the ease of the cal-
culation. The calculations in this paper are performed witha
supercell method using the MIT Photonic-Bands (MPB) pack-
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age [19].
We first study the{111} surface modes following Ref. [4].

A termination parameterτ (0≤ τ < 1) is defined to describe
the plane of termination on the surface. Shown in Fig. 1(a),
the face-centered-cubic (fcc) primitive cell (red lines) are en-
closed by six{111} surfaces. Let one end surface be theτ = 0
plane and the opposite end be the equivalentτ = 1 plane.
Note this convention is not the same as that in Ref. [4]. Fig.
1(b) shows the band diagram of the{111} surfaces of the in-
verse diamond structure with background dielectric constant
of 13 and air sphere radius of 0.325a on every diamond lat-
tice point. This structure has a bulk gap size of 29.6%. The
confined surface dispersions under the lightline and insidethe
bandgap are plotted for different terminations within one cy-
cle of the termination parameters. Whenτ increases from 0 to
1, exactly two[24] surface dispersions fall from the air band,
across the bandgap, to the dielectric band. By dielectric and
air bands[2] we mean the bulk bands under and above the bulk
gap; they correspond to valence and conduction bands in elec-
tronic band theory. One of the surface dispersions containsthe
TE-like states whose dominant electric field component is in
the surface plane; the other contains the TM-like states whose
dominant magnetic field component is in plane. The surface
dispersions are cut off by either the light-line or the bulk di-
electric projected bands.
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FIG. 2: (a) One unit cell of the edge waveguide along~a1. The 3D
PhC consists of air-spheres of diamond lattice in a dielectric matrix
rendered in gray solid. The cells and{111} surfaces are the same
as those in Fig. 1(a). The top purple area in the cubic cell (001)
plane is the region where the 2D cuts are made in Fig. 4 and in the
Supplemental Material[22]. (b) Bandstructure of the edge waveguide
formed by two〈110〉 surfaces, both of zero termination parameters.

The [110]( ˆa1) edge can be defined by introducing another
{111} surface. In this paper, we study the edge of an acute
angle (70.53◦) defined by surface (111) and (111) denoted by
surface-1 and surface-2 respectively. The edge is determined
by their termination parametersτ1 andτ2. From now on, we
use the notation (τ1,τ2) to describe a specific edge geometry.

Fig. 2(a) shows the dielectric structure of the (1,1) edge. (1,1)
edge is physically the same as the (0,0), (0,1) and (1,0) edges,
when the bulk and surfaces are infinitely extended in space.
The band diagram of this edge waveguide is shown in Fig.
2(b). The dispersion of the edge mode is drawn in red. The
surface band projections of the two identical surfaces are plot-
ted in purple and filled with slanted lines to the left and right
representing the two surfaces on the left and right. The portion
of the surface bands in the gray shaded region (above the light-
line) are the guided surface modes projected from other direc-
tions. Since the surface dispersions are mostly isotropic in the
surface BZ, the cut-offs of the surface bands in the waveguide
diagram are close to a straight line above the light-line.

All the possible edges in this setup can be exhausted by
tuningτ1 andτ2 independently from 0 to 1. We illustrate this
process in Fig. 3(a) and compile the dispersion results in Fig.
3(b). In Figs. 2(b) and 3(b), all the edge dispersion curves
are tied to certain surface bands. This is in contrast to the
relation between surface dispersions and bulk bands in Fig.
1(b), where the surface dispersions are sweeping through the
bulk gap independently of the bulk bands. The difference can
be understood by considering the real space configurations in
those two cases. While the surface cell can be terminated on
top of the bulk cells, the edge cell (formed by cutting surfaces)
is always moving along with the surface planes. This edge-
surface association happens in both real and k spaces. The
field distribution of an edge mode is mainly localized on the
side of the surface it connects to in the band diagram. This is
supported by the top two mode profiles in Fig. 4. The field of
the mode in (0.4,0.0) is mainly concentrated towards surface-
1; the dispersion of this mode is connected to the surface-1
band in the band diagram. The (0.0,0.4) mode is a mirror
image of the (0.4,0.0) mode; it is associated with surface-
2. When the two surfaces are identical, the edge modes are
shared by both surfaces.

The periodic evolution of the edge unit cell can be under-
stood through the simple heuristic in Fig. 3(a). All the prim-
itive cells are labeled by b(bulk), s(surface) and e(edge) ac-
cording to their locations. The (0,0) edge unit cell has N by N
bulk cells, N surface-1 cells, N surface-2 cells and one edge
cell. From (0,0) to (1,0), N surface-1 cells evolve into bulk
cells; the edge cell evolves into a surface-2 cell; N+1 new
cells are created to replace them. In the reciprocal space, a
total number of 2(N+1) modes[24], per k point, drop in fre-
quency to find their new homes. At the same time, the same
number of modes drop from the air band to replace them. The
end point (1,0) has the same spectrum as that of (0,0) except
there are 2N more bulk states in the bulk dielectric band and
one more state in each surface-2 bands. Calculation resultsof
this transition are shown in band diagrams at the top row of
Fig. 3(b). Due to the one to one transition between the old
and new edge cells, two edge states appear during this transi-
tion. The two edge modes are associated with each surface-1
bands of different polarizations. Similar transition happens
from (1,0) to (1,1).

When both surfaces are evolving at the same time (τ1 =
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FIG. 3: (a) Schematic illustration of the periodic evolution of the edge unit cell. The cells of the outlined font indicate the increment from
the original structure. By dashing the left and bottom boundaries of the structures, we mean the spatial extension of thecells beyond what is
drawn. (b) Evolution of the edge dispersion diagrams of different surface terminations. The mode profiles of the circlededge dispersions at
the zone boundary (K’) are presented in Fig. 4 and in the Supplemental Material[22].

τ2), the number of edge modes are doubled. The four edge
modes are a result of the involvement of both the neighbor-
ing surface-1 and surface-2 cells during the edge formation.
Recall for the transition from (0,0) to (1,0) or (0,1), only one
surface cell is involved in edge formation. The existence of
four edge modes are shown at the bottom row of the band di-
agrams in Fig. 3(b). In the (0.1,0.1) and (0.4,0.4) plots, there
are two edge modes on each side of the TM-like surface bands.
In the (0.6,0.6) and (0.7,0.7) plots, there are another two edge
modes on top of the TE-like surface bands. The different fre-
quency orderings of the two edge modes with respect to their
associated surface bands are consistent with the concentration

factors of the modes defined as
∫

ε 6=1 d3rε(r)|E(r)|2
∫

d3rε(r)|E(r)|2 . The mode
frequency is lower if its electric field is more concentratedin
the dielectric.

The middle row of the band diagrams in Fig. 3(b) con-
nects two of the plots in the top and bottom rows by increas-
ing τ2. These plots illustrate the interaction between the sur-
face and edge bands. Whenτ1 is fixed at 0.4, the increase of
τ2 from 0.0 to 0.4 pulls the TM-like surface-2 band towards
the TM-like surface-1 band. One of the surface dispersions is
pushed out of the surface-2 band and becomes an edge disper-
sion. Whenτ1 is fixed at 0.6, increasingτ2 from 0.0 to 0.6
pulls both surface-2 bands down. From (0.6,0.0) to (0.6,0.4),

the TM-like surface-2 band “exchanged” its edge mode with
the TM-like surface-1 band. When an edge mode changes its
surface connection, its field localization also moves from one
surface to the other. From (0.6,0.4) to (0.6,0.6), the two edge
modes associated with the two TE-like surface bands move
through the TE-like surface-2 band and end up at the top in
the (0.6,0.6) diagram.

3D vectorial field profiles of several edge modes, associ-
ated with the TM-like surface bands, are shown in Fig. 4. The
symmetry of the dielectric structure is helpful in classifying
the modes. In the waveguide unit cell shown in Fig. 2(a),
the (110) mirror plane at~a1, but perpendicular to~a1, is the
only point group operation that keeps the dielectric structure
invariant under all termination parameters. In the waveguide
BZ, Γ and K’ points are invariant under this mirror opera-
tion. So the mode profiles at K’ can be classified by even and
odd with respect to this central mirror plane. We call the four
modes in Fig. 4 odd due to the zero field intensity at the sym-
metry plane. Whenτ1 = τ2, we have a second mirror plane
of (110) containing~a1 and ẑ axes. The four edge modes in
the last row of Fig. 3(b) can be classified as symmetric or
anti-symmetric with respect to the plane. It is evident thatthe
lower frequency mode in (0.4,0.4) are symmetric and the other
is anti-symmetric. Another interesting observation illustrated
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FIG. 4: Mode profiles of the edge modes associated with the TM-like
surface bands at the BZ boundary(K’). The dielectric structures are
drawn as transparent contour surfaces in gray. The arrows point to
the directions of the electric fields; their sizes representthe field am-
plitudes. The colors of the arrows represent the field locations along
the waveguide propagation direction(~a1). The fields of the ampli-
tudes one order of magnitude less than the maximum field amplitude
are not plotted. The insets on the sides of the vector plots are the
plane cuts of the intensity square of the electric fields. Thearea and
location of the plane (in air) is illustrated in Fig. 2(a). Central lines
are drawn in yellow dash to indicate the mode positions.

in Fig. 4 is the manifestation of the mode interaction in the
their fields. The mode profiles in Fig. 4 show the field vectors
of the two (0.4,0.4) modes are the addition and subtraction of
the field vectors of the modes in (0.4,0.0) and (0.0,0.4). The
mode profiles of the two even edge modes associated with the
TE-like surface bands in (0.6,0.6) are presented in the Supple-
mental Material[22].

In order to evaluate the potential of the edge modes as
waveguides, we present the effective mode areas (EMA),
group indices and guiding bandwidths in Fig. 5 for the two
edge dispersions of the (0.1,0.1) edge. The EMAs are calcu-

lated using(
∫
vol d

3r|E(r)|2)2
a√
2

∫
vol d

3r|E(r)|4 [20]. The integration volume (vol)

is the unit-cell of the waveguide which isa/
√

2 long in the
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FIG. 5: Effective mode areas and group indices of the edge modes
of the (0.1,0.1) edge are evaluated over their operational bandwidths.
Field profiles are plotted for three representative modes with the gray
outlines of the dielectric-air interfaces.

waveguiding direction. All these waveguide parameters are
comparable to the 2D PhC air-clad membrane waveguides that
have been well studied[21]. The magnitudes of the electric
fields are plotted for three modes at the front surface ((110)
plane at~a1) of the wavegudie unit-cell.

Finally, we would like to point out that the interplay be-
tween the edge, surface and bulk states can be more compli-
cated in different edge formations. For example, the edge can
be formed by two different lattice planes; the edge unit-cell
can contain more than one primitive cell along the waveguid-
ing direction; the edge can be further modified by adding or
removing materials. We believe the approach and general ar-
guments made in this paper can be adopted to study those sys-
tems and to guide the design of devices made in 3D PhCs.
In those devices, engineering of the edge mode dispersions is
necessary to avoid finite size effects; one can also take advan-
tage of them to guide light into, out of, or around the bulk. The
fact that an edge can be formed by two different surfaces with
very sharp angles may be interesting for sensing and prob-
ing purposes. Needless to say, topologically protected edge
modes of 3D PhCs are also anticipated.
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