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The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different
scales using the TMD evolution equations applied to previously existing extractions. We apply the
Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calcu-
lations rely on the universality properties of TMD-functions that follow from the TMD-factorization
theorem. Accordingly, the non-perturbative input is fixed by earlier experimental measurements,
including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan
(DY) scattering. It is shown that recent preliminary COMPASS measurements are consistent with
the suppression prescribed by TMD evolution.

Conventional collinear perturbative QCD (pQCD),
when applied in its range of applicability, has proven suc-
cessful for over three decades [1]. Along the way, it has
illustrated the importance of evolution for relating physi-
cal observables to fundamental quark-gluon QCD degrees
of freedom in a unified formalism. The classic applica-
tions of pQCD require parametrizations of collinear par-
ton distribution functions (PDFs), wherein all intrinsic
transverse motion of the confined partons is neglected
inside the hard part of the collision and integrated over
in the definitions of the PDFs. The PDFs contain in-
formation about the intrinsic non-perturbative structure
of the hadron and have clear operator definitions with
well-understood scale dependence (QCD evolution).
An important next step is to achieve a similarly

successful application of perturbative QCD that takes
into account the emerging picture of the hadron as a
three-dimensional dynamical object composed of par-
tons with their own intrinsic motion. In such studies,
the relevant observables are not properly handled by
standard collinear factorization, and one is confronted
with the objects like TMD parton distribution func-
tions (TMD PDFs) and TMD fragmentation functions
(FFs). (Collectively, we refer to such objects as “TMDs”)
These, like their collinear counterparts, describe the non-
perturbative properties of the external hadrons; but, un-
like the collinear PDFs, the TMDs also account for the
intrinsic transverse Fermi motion of the bound partons.
Several experimental facilities, including HERMES

(DESY), COMPASS (CERN) and JLab, explore these
distributions. Moreover, the future 12 GeV JLab up-
grade and a planned Electron Ion Collider (EIC) [2]
will provide new opportunities to experimentally probe
hadron structure. A particularly interesting TMD PDF
is the so-called Sivers function, which is interpreted as
the probability density for finding a parton with a given
transverse and longitudinal momentum inside a trans-
versely polarized hadron (usually proton) target. That
it arises at leading power in pQCD is due to interesting
non-perturbative aspects of QCD related to time rever-

sal and parity invariance. In polarized SIDIS, it gives
a sin(φh − φS) azimuthal modulation to the differential
cross section, φS and φh being the azimuthal angles of the
initial transverse hadron spin and the final state hadron
transverse momentum respectively. This letter will focus
on a comparison of recent theoretical treatments of the
Sivers function with recently available experimental data
on TSSAs in SIDIS, and predict the size of the asymme-
try for future extractions at larger Q.
Like the collinear PDFs, TMDs evolve with the hard

scale Q. To properly account for this it is imperative to
work in a QCD factorization treatment that incorporates
well-defined TMDs. The original TMD-factorization for-
malism was developed by Collins, Soper, and Sterman [3–
5] in the context of e+e−-annihilation to back-to-back
jets and the unpolarized Drell-Yan process. The CSS for-
malism was later extended by Ji, Ma and Yuan to SIDIS
in Ref. [6], and to include polarization in Ref. [7]. The
application of Collins-Soper (CS) evolution was extended
to the spin-dependent case by Idilbi et al in Ref. [8]. Fur-
thermore, an implementation of a CS-style evolution has
been applied in Ref. [9] to the calculation of TSSAs by
including a Sudakov form factor, leading to approximate
power-law Q-behavior for the peak of the asymmetry.
For quite some time, however, a satisfactory treatment

of TMD-factorization remained incomplete because of a
lack of good definitions for the TMD PDFs and FFs
themselves [10–13]. The most commonly quoted defini-
tions suffered from unphysical divergences, rendering it
unclear which objects should be used in parametrizations
of experimental data and treated as universal in the usual
sense of a factorization theorem. This is particularly
problematic for studies that purport to extract proper-
ties intrinsic to the hadrons. Recently, a complete TMD-
factorization derivation, in terms of well-defined TMDs
with individual evolution properties, was presented by
Collins in Ref. [14]. Refs. [15, 16] further illustrated how
the formalism can be used to obtain evolved TMDs from
fixed-scale fits for unpolarized TMDs and the Sivers func-
tion.
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Existing extractions of the Sivers function using the

TSSA, A
sin(φh−φS)
UT , have been performed using experi-

mental data at fixed scales [17–22]. These extractions
provide interesting information about TMD effects at the
fixed scales where they are performed; however, without
a reliable way to evolve them to different scales, their
predictive power remains limited.
The purpose of this letter is to demonstrate that by

using QCD evolved TMDs one can explain an observed
discrepancy between HERMES and COMPASS data and
for the first time make predictions for upcoming experi-
ments at higher energy scales on the basis of a complete
and correct treatment of evolution for the TMDs.
Definitions and Notation: The differential cross

section for SIDIS, l(l) + N(P, S) → l(l′) + h(Ph) + X
is [23–25]

dσ

dxdydzdφhdφSPh⊥dPh⊥
=

α2y

2zQ4
M LµνW

µν (1)

where Ph⊥ is the transverse momentum of the final state
hadron h, and where we utilize the standard kinematical
variables: q2 = −Q2, x = Q2/2P · q, y = P · q/P · l,z =
P · Ph/P · q. The TMD-factorization formula for SIDIS
in terms of well-defined TMD PDFs is [14]

Wµν =
∑

f

|Hf (Q
2, µ)|µν

×
∫

d2pTd
2KT δ

(2)(zpT +KT − P h⊥)

× Ff/P↑(x, zpT , S;µ, ζF )Dh/f (z,KT ;µ, ζD)

+ Y (Ph⊥, Q) , (2)

where all non-perturbative information is encoded in
the TMD PDF Ff/P↑ and the TMD FF Dh/f while
|Hf (Q

2, µ)|µν is a perturbatively calculable hard part.
The Y (Ph⊥, Q)-term gives the correct treatment of the
cross section at high Ph⊥ ∼ Q in terms of collinear factor-
ization. As is common, the renormalization scale is set to
µ = Q. The parameters ζF , ζD, which are related to the
regularization of rapidity divergences, obey ζF ζD ∼ Q4.
The Sivers asymmetry is defined as a the ratio of cross

section combinations:

A
sin(φh−φS)
UT =

∫

dφhdφs2 sin(φh − φS)(σ(φh, φS)− σ(φh, φS + π))
∫

dφhdφS(σ(φh, φS) + σ(φh, φS + π))
.

(3)

In the numerator, the integration over azimuthal angles
with a sin(φh − φS) weighting factor projects out the
Sivers effect. The numerator and denominator may also
be integrated over x, z and/or Ph⊥ depending on the
particular combination of variables one is interested in.
The asymmetry is obtained by applying the TMD-

factorization in Eq. (2) to obtain cross sections in Eq. (3).

The calculations themselves are typically done in trans-
verse coordinate bT -space in terms of structure functions,
whose relations to the differential cross section are given
in Ref. [26]. In the case of the Sivers function, the general
expression for the evolved TMD in coordinate space was
found in Ref. [16] to be

F̃ ′ ⊥ f
1T (x, bT ;Q, ζF ) = F̃ ′ ⊥ f

1T (x, bT ;Q0, Q
2
0)

× exp

{

ln
Q

Q0
K̃(b∗;µb) +

∫ Q

Q0

dµ′

µ′

[

γF (g(µ
′); 1)

− ln
Q

µ′
γK(g(µ′))

]

+

∫ µb

Q0

dµ′

µ′
ln

Q

Q0
γK(g(µ′))− gK(bT ) ln

Q

Q0

}

. (4)

Analogous formulas hold for the unpolarized TMDs.
The symbols, γK and γF , are perturbatively calculable
anomalous dimensions, K̃(b∗;µb) is the perturbatively
calculable CS kernel written in terms of b∗ which is the
prescription for matching to the region where 1/bT can be
treated as a perturbatively large scale. We use the usual
prescription of [5] where b∗ = bT /

√

1 + b2T /b
2
max and

µb = C1/b∗, and bmax and C1 are parameters to be spec-

ified later. Note that it is the derivative F̃ ′q⊥
1T (x, bT ;Q, ζ)

of the QCD evolved coordinate-space Sivers function with
respect to bT that appears in Eq. (4) for the evolution.
Q0 is the starting scale for the evolution. The non-
perturbative but universal and scale-independent func-
tion gK(bT ) describes the behavior of K̃(bT ;µb) in the
non perturbative region at large bT . An important
prediction from the TMD-factorization theorem is that
gK(bT ) is universal, not only between different processes,
but also between all different kinds of quark TMDs.
For this letter, we assume that Q is low enough that

we can neglect the Y -term in Eq. (2) [15]. Furthermore,
we use a Gaussian ansatz to parametrize the input distri-
bution F̃ ′ ⊥ f

1T (x, bT ;Q0, Q
2
0), though this means that we

do not utilize the fact that at larger Ph⊥ ≫ ΛQCD the
TMD PDFs are related to collinear distributions through
perturbative coefficient functions. (In the Sivers case,
this involves the Qiu-Sterman function [29, 30].) Still, in
Ref. [15] it was shown that a Gaussian ansatz provides
a good description of the evolved Sivers function for the
low region of transverse momentum and moderate hard
scales we are interested in for this letter. Several groups
have parametrized the polarized and unpolarized TMD
PDFs and FFs at fixed scales in terms of simple Gaussian
fits [17, 19–22, 31], and these may be used as the input
functions for the evolution.
Analysis and Discussion: As input distributions,

we use the already existing Gaussian parametrizations of
the Torino group [22], relevant for low 〈Q2〉Hermes ≃ 2.4
GeV2 and typical for the HERMES experiment. These
earlier fixed scale fits were done at leading order in QCD
and neglecting the QCD evolution of the TMDs, which
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FIG. 1: Comparison between HERMES [27] and preliminary COMPASS data [28] for the (a.) z and (b.) Ph⊥ dependence of
Eq. (3) with a proton target and π+ and h+ as final state hadrons respectively. The solid line is the fit from Ref. [22]. The
dashed curve is the result of evolving to the COMPASS scale using the full TMD-evolution of Ref. [16].

was not available at that time. We note that the anal-
ysis of Ref. [22] also uses deuteron data [32] from the
COMPASS experiment, which corresponds to higher val-
ues of Q2. However, the COMPASS asymmetry [32] on
deuteron target is very small due to strong cancellations
between the up and down quark Sivers functions and thus
is not heavily affected by the evolution. We have verified
that the results of the Torino fits are negligibly altered
if the deuterium data are excluded and only HERMES
data [27] are used in the fit, and the main result of our
present analysis is not affected.

Our calculations will follow the steps of Ref. [16]. For
gK , we use the functional form gK = 1

2g2b
2
T with g2 =

0.68 GeV2 [33], which was obtained by fits performed
using Drell-Yan data. In Eq. (4), this corresponds to
using C1 = 1.123 and bmax = 0.5 GeV−1. All anomalous
dimensions and K̃ are calculated to lowest non-vanishing
order as in Refs. [14, 15].

In Fig. 1(a,b), we show the evolution using the full
TMD-factorization approach as expressed in Eq. (4),
where the evolution is due to the terms in the expo-
nential. The evolution is applied to the most recent
Torino fits [22] as a function z and Ph⊥ , and use
hard scales corresponding to both HERMES data [27]
and recent preliminary COMPASS data [28]. The re-
sult of the evolution is compared with the data. The
x-dependent asymmetry is not ideal for the comparison
because there are strong correlations between x and Q2.
(Recall Q2 ≃ xys.) However, z or Ph⊥ dependent asym-
metries are measured at almost the same hard scales,
namely 〈Q2〉Hermes ≃ 2.4 GeV2 and 〈Q2〉COMPASS ≃ 3.8
GeV2, so we focus on the Sivers asymmetry as a func-
tion of these variables. (For the preliminary h+ COM-
PASS data that we use, 〈Q2〉 varies between 3.63 GeV2

and 3.88 GeV2, in the range of z from 0.2 to 0.7. The
corresponding variation in our calculation is negligible

relative to the variation between the HERMES and pre-
liminary COMPASS data sets.) We observe that includ-
ing QCD evolution leads to excellent consistency between
the HERMES [27] and preliminary COMPASS data [28],
without the need for further fitting. The two data sets
correspond to different ranges in x, and this could be
partly responsible for the variation. A similarly fast evo-
lution has not been seen so far in the Collins Single Spin
Asymmetry [28, 34], suggesting a more complicated in-
terplay between bT , x and z dependence. We leave a
careful consideration of these issues to future studies.
Nevertheless, we find the early success of the compari-
son in Fig. (1) encouraging, especially as leading order
fits [19, 21, 22] fail to reproduce COMPASS proton data
[28] sufficiently well. Still, we caution that future fits will
need to account for the x-dependence as well.

A critical point is that the information about the non-
perturbative evolution contained in gK is taken from the
measurement of a totally different observable, at much
higher energy scales [33] (unpolarized Drell-Yan scatter-
ing up to Tevatron energies). In Fig. 1(b) we show a
similar plot but for the Ph⊥ dependence. That the same
gK successfully describes TSSA at HERMES and COM-
PASS is compelling evidence for the universality of gK
predicted by the TMD-factorization theorem.

In Fig. 2, we show the evolution of the full asymmetry
to higher values of Q2. Note that, although Refs. [15, 16]
report a strong suppression of the unpolarized TMDs and
the Sivers function itself with increasing Q2, the TSSA is
not as heavily suppressed. Therefore, it may be expected
that the Sivers SSA remains significant at the higher Q
values of experiments planned at the Relativistic Heavy
Ion Collider (RHIC) and the EIC. Still, the QCD evolu-
tion effects are clearly non-negligible and should be cor-
rectly included in future extractions. Ref. [9] predicts a
roughly ∼ 1/

√
Q suppression for the peak of the Sivers
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FIG. 2: Sivers evolution in Q2, integrated over x, z and Ph⊥.

asymmetry as a function of transverse momentum, for
large Q2 >∼ 10 GeV2. We find that, for the full asymme-
try integrated over all transverse momentum, a power-
like scaling law does not provide a good description in
the range of Q in Fig. 2. Generally, we find that the evo-
lution leads to suppression that is faster than ∼ 1/

√
Q,

but slower than ∼ 1/Q2. We caution, however, that a
completely correct treatment at large Q must include the
Y -term in Eq. (2), and it is possible that this will weaken
the rate of the suppression.
To conclude, we remark that it is important for future

theoretical calculations to not only explain experimen-
tal results, but also to make precise pQCD-based pre-
dictions that can be tested against future data at larger
Q. With this in mind, we view the success of the TMD-
factorization treatment in explaining the HERMES and
COMPASS as highly encouraging.
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