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Efficient momentum relaxation through umklapp scattering, leading to a power law in temperature
d.c. resistivity, requires a significant low energy spectral weight at finite momentum. One way to
achieve this is via a Fermi surface structure, leading to the well-known relaxation rate Γ ∼ T 2. We
observe that local criticality, in which energies scale but momenta do not, provides a distinct route
to efficient umklapp scattering. We show that umklapp scattering by an ionic lattice in a locally
critical theory leads to Γ ∼ T

2∆kL . Here ∆kL
≥ 0 is the dimension of the (irrelevant or marginal)

charge density operator Jt(ω, kL) in the locally critical theory, at the lattice momentum kL. We
illustrate this result with an explicit computation in locally critical theories described holographically
via Einstein-Maxwell theory in Anti-de Sitter spacetime. We furthermore show that scattering by

random impurities in these locally critical theories gives a universal Γ ∼
(

log 1

T

)

−1
.

CONTEXT: THE MANY FACES OF THE D.C.

RESISTIVITY

The d.c. resistivity of a system with a net charge den-
sity is ultimately tied to the rate at which the charge-
carrying excitations can lose their momentum. If the
total momentum is conserved, the conductivity diverges
at the lowest frequencies ω → 0 as

σ(ω) =
χ2

~J ~P

χ~P ~P

(
i

ω
+ δ(ω)

)
. (1)

For instance, in a relativistic theory, Ward identities im-
ply that the susceptibilities χ~J ~P = ρ and χ~P ~P = ε + P

[1–3]. Here ρ, ǫ, P are the charge and energy densities
and pressure. At low temperatures ǫ+ P = µρ.
It is of course intuitively plausible that a net charge

will accelerate indefinitely under an applied electric field.
Formulae such as (1) indicate that the d.c. conductivity
is a subtle observable. Despite being a low energy quan-
tity, it is sensitive to UV data such as the charge density
and translation invariance. Computations of finite d.c.
conductivities at nonzero density necessarily include the
effects of momentum non-conserving terms. The classic
example is Fermi liquid theory in the presence of irrel-
evant couplings to a lattice, which leads to a universal
resistivity r ∼ T 2, as we will briefly review. Similarly,
the remarkable robustness of the observed linear in (low)
temperature resistivity across a range of chemically dis-
tinct unconventional materials (for an overview see [4])
may suggest that the key physics there is also universal,
i.e. describable within the framework of effective field
theory. In this letter we will present a new way, distinct
from Fermi surface kinematics, in which the UV sensitiv-
ity of the d.c. resistivity can be subsumed into a critical
effective field theory.
Any loss of momentum is a question of timescales. To

invalidate the conclusion (1), and hence achieve a finite
d.c. resistivity, momentum must be effectively lost on the
experimental timescale. Two natural ways to achieve this

are firstly if the charge carriers of interest are parametri-
cally diluted by a bath of other degrees of freedom, and
secondly if the charge carriers interact with parametri-
cally heavier degrees of freedom. In both cases the charge
carriers can dump their momentum into the other degrees
of freedom and the momentum will not be returned to the
charge carries within the experimental timescale. Any re-
liable computation of a d.c. conductivity must hinge on
an approximation analogous to the two just described.

There has been some recent success realizing the for-
mer of these scenarios via the holographic correspon-
dence. Firstly in ‘probe brane’ setups, where the charge
carriers are parametrically diluted by critical neutral de-
grees of freedom [5]. An important class of these models,
where the probe brane is described by the Dirac-Born-
Infeld action, have been shown to have a low temperature
resistivity scaling as r ∼ T 2/z, in 2+1 dimensions, with
z the dynamical critical exponent governing the critical
neutral modes [6]. A second set of holographic models
that realize similar physics are the locally critical non-
Femi liquids of [7]. Here, a parametrically small fraction
of the charged degrees of freedom are fermions with non-
Fermi liquid dispersion relations due to interactions with
a bath of fractionalized charged degrees of freedom [8, 9].
The contribution of the non-Fermi liquid excitations to
the resistivity goes like r ∼ T 2νkF , where νkF

is related
to the, UV sensitive, scaling dimension of the fermionic
operator in the low energy locally critical theory of the
fractionalized degrees of freedom [10].

The second scenario, involving interaction with para-
metrically heavy degrees of freedom, has the advantage
that such degrees of freedom always exist in actual mate-
rials: as quenched random impurities and/or as a lattice
of ions. It also does not depend on a large N limit in
an essential way. Many of the most interesting materials
appear to be very pure, and partially for that reason we
will focus on scattering off an ionic lattice in this letter.
A periodic lattice degrades momentum via umklapp scat-
tering processes. In the final section we will also present
a result for random impurity scattering.
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MOMENTUM RELAXATION RATE DUE TO

UMKLAPP SCATTERING

Consider a translationally invariant field theory at fi-
nite density such that the only conserved vector quantity
is the total momentum. We recalled above that this re-
sults in an infinite d.c. conductivity. Now, perturb this
theory by an irrelevant operator (so the IR is still de-
scribed by the original fixed point) that breaks transla-
tional invariance:

H = H0 − gO(kL) , (2)

where kL represents the typical lattice momentum scale.
For operators A and B, define

C̃AB(ω) =
T

iω

[
GR

AB(ω)−GR
AB(i0)

]
, (3)

where GR is the retarded Green’s function. The d.c.
conductivity is given by the Kubo formula as:

σ = lim
ω→0

ImGR
~J ~J
(ω)

ω
=

1

T
lim
ω→0

C̃~J ~J(ω) . (4)

We would like to have a perturbative expression that
captures the leading contribution coming from the lead-
ing irrelevant correction introduced in (2). The appropri-
ate way to do this is given by the memory matrix formal-
ism [11]. A crucial part of this formalism is the inclusion

of all conserved operators that overlap with ~J in matrix
conductivities. In our case this is only the momentum ~P .
Intuitively, the conductivity diverges because the current
operator has some overlap with the momentum operator,
which is conserved. Once this is considered, we can write

σ̂(ω) = χ̂ ·
(
M̂(ω)− iωχ̂

)−1

· χ̂ , (5)

where hatted quantities are two dimensional matrices
with indices either ~J or ~P ; χ̂ is the static susceptibil-
ity matrix and M̂ the ‘memory matrix’ [11]. When M̂

vanishes at ω = 0 we obtain (1). It can be shown that to
leading order in g the M~P ~P component determines the
d.c. conductivity. In this approximation

M~P ~P =
1

T
lim
ω→0

C̃ ~̇P ~̇P
(ω) =

g2k2L
T

lim
ω→0

C̃O(kL)O(kL)

∣∣∣
g=0

= g2k2L lim
ω→0

ImGR
OO(ω, kL)

ω

∣∣∣∣
g=0

. (6)

Here we have used that ~̇P = i[H, ~P ] = g ~kL O(kL). Thus
the d.c. conductivity is

σ~J ~J = lim
ω→0

χ2
~J ~P

M~P ~P (ω)
≡
χ2

~J ~P

χ~P ~P

1

Γ
, (7)

where Γ = limω→0
M~P ~P

(ω)

χ~P ~P

is the momentum relaxation

rate, as we can see from the ~P ~P component of σ̂.

For umklapp scattering by an ionic lattice, O = J t

and the lattice appears as a spatially dependent chemical
potential. The momentum relaxation rate is then

Γ =
g2k2L
χ~P ~P

lim
ω→0

ImGR
JtJt(ω, kL)

ω

∣∣∣∣
g=0

. (8)

CRITICAL UMKLAPP WITH AND WITHOUT

FERMI SURFACES

The previous section implies that the momentum re-
laxation rate due to perturbative umklapp scattering by
an ionic lattice is given through the spectral function,
ImGR

JtJt(ω, kL), with ω → 0. In order for this quantity
to be captured by a critical effective field theory, with,
say, a resistivity that is a power law in the temperature, it
is necessary that low energy excitations exist at k = kL.
If no excitations are supported at the lattice momentum,
for instance if ω ∼ kz, then the resistivity will be due to
exponentially suppressed Boltzmann states.
Systems with a Fermi surface admit critical umklapp

scattering in two senses, as we now review. The first is
if the umklapp momentum connects two points on the
Fermi surface. Then all charge carriers involved in the
umklapp scattering are critical, despite the momentum
transfer. This process is mediated by the density opera-
tor at finite momentum. In 2+1 dimensions

J t(ω, k) ≡ J t(p) =

∫
d3q ψ†

σ(q)ψσ(p+ q) . (9)

In Fermi liquid theory this operator is relevant with di-
mension ∆ = −1. It induces an RG flow that folds the
Fermi surface and gaps out the two points connected by
the lattice vector. This conclusion can be averted either
by tuning the gap to zero or by non-Fermi liquid physics
rendering the operator (9) irrelevant. An interesting ex-
ample of the first possibility is given by the ‘hot spots’ on
a Fermi surface coupled to a critical spin density wave.
Fermions at the hot spots contribute a strong power law
conductivity, but can easily be short-circuited by the re-
mainder of the ‘cold’ fermions [12, 13]. A renormaliza-
tion group treatment [14] suggests, however, that critical
umklapp scattering at the hot spots can be communi-
cated to the rest of the Fermi surface [15]. In 1+1 dimen-
sions, such hot spots constitute the entire Fermi ‘surface’
and one might expect that e.g. a half-filled Luttinger liq-
uid could exhibit a critical resistivity in cases where the
umklapp coupling is irrelevant [16]. This expectation is
thwarted by additional conservation laws [17–19].
The second way in which Fermi surface kinematics en-

able critical umklapp scattering is through coupling the
lattice to the irrelevant quartic operator

O(p) =
∫
(

4∏

i=1

d3pi

)
ψ†
σ(p1)ψ

†
σ′(p2)ψσ(p3)ψσ′ (p4)

×δ(3)(p1 + p2 − p3 − p4 − p). (10)
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The RG flow is towards the Fermi surface. In particular,
the delta function does not scale generically [20, 21]. The
entire Fermi surface will have a critical resistivity. This
is a well known fact, and the corresponding momentum
relaxation is easy to compute in the framework of the
previous section. The operator (10) has scaling dimen-
sion ∆ = 1. The imaginary part of the Green’s function
must be odd under ω → −ω and therefore we can antici-
pate the momentum relaxation rate from (6) and (7) will
have the (low) temperature dependence

Γ ∼ lim
ω→0

ImGR
OO(ω, kL)

ω
∼ T 2 . (11)

This is the well-known Fermi liquid theory result. The
above considerations can straightforwardly be general-
ized to cases where the excitations of the Fermi surface
do not have Fermi liquid dispersion relations.
For a convex Fermi surface in 2+1 dimensions, the cur-

rent ~J remains a conserved quantity in Fermi liquid the-
ory, to leading order at low frequencies. Here our as-
sumption that the current ~J was degraded prior to the
consideration of umklapp effects does not hold. Consid-
eration of ~J and ~P simultaneously via the entire memory
matrix [22, 23] recovers a resistivity r ∼ T 2.
Without a Fermi surface-like structure (including e.g.

Fermi points), one is left with scalings towards the ori-
gin ω ∼ kz. An exceptional case, however, is the limit
z → ∞. In this limit, time scales but space does not. In
such a locally critical theory, all momenta become inde-
pendently critical at low energies. It is immediately clear
that umklapp scattering off an ionic lattice will lead to
critical resistivities in such a theory. The charge density
operator J t(ω, k) will have a scaling dimension ∆k un-
der the critical scaling. The UV quantity kL will then
determine the IR scaling dimension ∆kL

of the modes
that control the loss of momentum. With this difference,
that kL appears in the operator dimension, the logic then
proceeds very similarly to the Fermi liquid case. In par-
ticular, the momentum conservation delta function again
does not scale, leading to GR

JtJt(ω, k) having dimension
2∆k + 1. Therefore, the temperature dependence of the
momentum relaxation rate (8) is

Γ ∼ lim
ω→0

ImGR
JtJt(ω, kL)

ω
∼ T 2∆kL . (12)

If we require the operator J t(ω, k) to be marginal or irrel-
evant in the IR theory – and if this is not the case then we
have not reached the true IR and our perturbation the-
ory is suspect – then ∆kL

≥ 0. As for the Fermi liquid,
a marginal operator leads to a constant, T 0, momentum
relaxation rate.
Locally critically theories also dovetail in an interesting

way with Fermi surfaces, as one can efficiently scatter
fermionic excitations with locally critical bosons. This
fact is behind the non-Fermi liquid spectral functions and

resistivities of [7, 9, 10]. In this work we are exploiting
a different consequence of local criticality: the efficiency
of umklapp scattering in such a theory, independently of
the presence of Fermi surfaces.

HOLOGRAPHIC MODEL FOR LOCALLY

CRITICAL UMKLAPP SCATTERING

In holography, the IR field theoretical physics is de-
scribed by the far interior of the dual spacetime. In the
absence of explicit charged matter in the bulk [24], it is
a robust feature [25] that at zero temperature and at fi-
nite charge density, a fully regular solution to the bulk
equations of motion will have an AdS2 × R

2 IR geome-
try. It was emphasized by [7] that the isometries of this
IR spacetime – time is part of the AdS2 factor and scales
while space does not – entailed an emergent local critical-
ity. In fact, the scaling in time is part of a larger emergent
SL(2,R) symmetry of AdS2 that strongly constrains low
energy Green’s functions, as we will see shortly. Here, as
in the remainder, we have specialized to 2+1 dimensional
field theories.
The simplest model that illustrates the physics of inter-

est is Einstein-Maxwell theory in asymptotically Anti-de
Sitter spacetime:

S =

∫
d4x

√−g
(

1

2κ2

(
R+

6

L2

)
− 1

4e2
FµνF

µν

)
.

(13)
We wish to compute retarded Green’s functions at low
temperature and frequencies ω, T ≪ µ. The momentum
however need not be small. It is well established that
holographically the dissipative low frequency physics is
captured by the near-horizon geometry, while low tem-
peratures means that the horizon will be near-extremal
(see e.g. [26]). Therefore, we can focus on the following
solution to the theory, which describes a black hole in
AdS2 × R

2:

ds2 =
L2

6

(
−f(r)dt

2

r2
+

dr2

f(r)r2
+ dx2 + dy2

)
. (14)

The Maxwell potential is A = 1√
6
eL
κ

(
r−1 − r−1

+

)
dt and

the emblackening factor f(r) = 1− r2

r2
+

.

To compute the retarded Green’s function of J t in this
background we must perturb the time component of the
Maxwell potential: δAt. Due to the finite energy and
momentum, this perturbation couples to other modes.
Taking the momentum to be in the x direction, these are:
{δgxx, δgyy, δgtt, δgxt, δAt, δAx} . All the perturbations
have the form of a function of r times e−iωt+ikx. A clever
choice of gauge invariant variables is [27, 28]:

Φ = δA′
t −
√

3

2

δgtt

f
, Ψ = δgyy , (15)
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and then define

Φ± = Ψ+
r2√
6k2

(
1±

√
1 + 2k2

)
Φ . (16)

These variables are now found to satisfy

Φ′′
±+

f ′

f
Φ′

±+

(
ω2

f2
− 1 + k2 ±

√
1 + 2k2

r2f

)
Φ± = 0 . (17)

These equations can be solved in terms of hypergeomet-
ric functions. One imposes, as usual [29, 30], infalling
boundary conditions at the horizon. The locally quan-
tum critical Green’s functions are obtain by expanding
the solution near the boundary r ∼ 0 of the AdS2 × R

2

region

Φ± ∝ r
1
2

(
r−ν± + G±(ω) r

ν±
)
. (18)

Here we introduced the exponents [28]

ν± =
1

2

√
5 + 4k2 ± 4

√
1 + 2k2 . (19)

We have normalized the spatial coordinates x, y differ-
ently in (14) relative to [28].
The locally quantum critical Green’s functions are

found to be

G±(ω) = −(πT )2ν±
Γ (1− ν±) Γ

(
1
2 − iω

2πT + ν±
)

Γ (1 + ν±) Γ
(
1
2 − iω

2πT − ν±
) . (20)

We have given this result in terms of the temperature
of the black hole T = 1

2πr+
. The expression (20) is in

fact determined, up to overall normalization, by the scal-
ing dimensions ν± + 1

2 of the operators and the SL(2,R)
symmetry of the black hole in AdS2 [26, 31, 32]. For
the momentum relaxation rate due to umklapp scatter-
ing, we will be interested in the ω → 0 expansion of the
imaginary part of the Green’s function. This gives

ImG±(ω) ∝ ω (πT )
2ν±−1

+ · · · . (21)

A well-established matching procedure, see e.g. [7, 28],
shows that this is equal to the imaginary part of the full
low frequency Green’s function ImG±(ω) ∝ ImG±(ω) .
From this result we can obtain the desired density-

density Green’s function. The density-density Green’s
function is found to be a linear combination of the G±
Green’s functions [28]. The G− Green’s function is more
IR singular than the G+ Green’s function, and so gives
the dominant contribution. From (21) and (8) the umk-
lapp momentum relaxation rate in this theory is

Γ ∼ lim
ω→0

ImGR
JtJt(ω, kL)

ω
∼ T 2ν−−1 . (22)

This result is consistent with the general expression (12)
and the fact that the dimension of the frequency-space
operator is ∆k = ν− − 1

2 .

DISCUSSION

We have found that local quantum criticality pro-
vides a new route, different to Fermi surface kinematics,
to obtain critical umklapp scattering. Local criticality
emerges naturally in holographic contexts, where it can
be stable over a made parametrically wide intermediate
energy range in a large N limit [9, 33–35].
In this work we have not touched upon the compu-

tation of optical conductivities. The optical and d.c.
conductivities are deeply interconnected but behave in
opposite ways. As we have seen, many low energy de-
grees of freedom can lead to a large resistivity, and hence
small d.c. conductivity. On the other hand, the op-
tical conductivity is essentially the spectral density for
charged degrees of freedom and is therefore large when
the d.c. conductivity is small. Critical optical conductiv-
ities due to umklapp scattering were recently found in an
RG treatment of the quantum critical spin density wave
transition in two dimensions [15].
Finally, we recall that scattering off random impuri-

ties is also naturally treated using the memory function
method. A formula for the scattering rate in that case
was obtained in [1, 36]. The formula is essentially just
an integral of our expression (12) over momenta, which
we might think of as averaging over lattice separations.
For the case of charged impurities

Γimp ∼ lim
ω→0

∫
d2k

(2π)2
k2

ImGR
JtJt(ω, k)

ω
∼
∫
dk k3 T 2∆k .

(23)
In the low temperature limit, this integral is dominated
by the small momentum contribution. Using the concrete
expression (19), the momentum is found to have a natural

scale k4⋆ ∼
(
log 1

T

)−1
, which is small. A scaling argument

then gives the momentum relaxation rate

Γimp ∼ 1

log 1
T

. (24)

Unlike the umklapp scattering we have focussed on, this
relaxation rate is completely universal in the sense that
it does not depend on the UV completion of the locally
critical IR theory. The power of the logarithm that ap-
peared is sensitive to the fact that in the holographic
model ∆k ∼ k4 at small k. A different power in the
small momentum expansion would have led to a different
power of the logarithm.
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