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Oscillons are massive, long-lived, localized excitations of a scalar field. We show that in a class of
well-motivated single-field models, inflation is followed by self-resonance, leading to copious oscillon
generation and a lengthy period of oscillon domination. These models are characterized by an
inflaton potential which has a quadratic minimum and is shallower than quadratic away from the
minimum. This set includes both string monodromy models and a class of supergravity inspired
scenarios, and is in good agreement with the current central values of the concordance cosmology
parameters. We assume that the inflaton is weakly coupled to other fields, so as not to quickly
drain energy from the oscillons or prevent them from forming. An oscillon-dominated universe has
a greatly enhanced primordial power spectrum on very small scales relative to that seen with a
quadratic potential, possibly leading to novel gravitational effects in the early universe.

Simple, single-field models of inflationary cosmology
are often associated with energy scales far beyond the
reach of present day accelerators and the properties of
the post-inflationary universe are largely unknown. One
constraint on this phase is that energy must be extracted
from the oscillating inflaton condensate, ensuring that
the universe becomes radiation dominated, setting the
scene for the hot big bang, and the production of the
cosmological neutrino background and nucleosynthesis.
A widely-studied candidate for this process is paramet-
ric resonance [1–3]. In many cases, the potential can be
self-resonant, where resonance generates quanta of the
inflaton field itself more efficiently than particles cou-
pled to the inflaton. We show that in a class of well-
motivated self-resonant models, the universe may become
dominated by oscillons: massive, localized, metastable
configurations of a scalar field [4–13].

In this letter, we study a single inflaton, φ, with a
canonical kinetic term and potential, V (φ), minimally
coupled to Einstein gravity. Oscillons can form if

V (φ) =
m2φ2

2
+ U(φ), (1)

where U(0) = 0 and U(φ) < 0 for some range of φ (see,
e.g. [10]). Consider potentials with V (φ) ∼ φ2α during
inflation and α < 1. These are generated by a number
of string and supergravity scenarios [14–20], and yield
U(φ) < 0 at large φ. We require that V (φ) has a stable
minimum which we chose to be at the origin, so it is
natural to expect that V (φ) ∼ φ2 for small φ. Finally,
by continuity, there is necessarily some crossover scale,
φ ≈ M , between these two regimes. We capture this
with the following explicit potential

V (φ) =
m2M2

2α

[(
1 +

φ2

M2

)α
− 1

]
. (2)

The precise forms of V (φ) in scenarios with V ∼ φ2α

can differ from equation (2): however, our results sug-
gest that while oscillon formation is sensitive to M , it is

insensitive to the detailed form of the potential. More-
over, for α = 1/2 we reproduce the axion monodromy
potential [15, 16]. We stipulate that the couplings be-
tween the inflaton and other fields are small enough for
them to be ignored.

The tensor-scalar ratio, r, and scale-dependence in the
scalar perturbations, |ns − 1|, grows with α (see, e.g.
[21]). Quartic inflation (α = 2) is ruled out by cur-
rent data [22–24] and even quadratic inflation (α = 1)
is somewhat disfavored, relative to models with α < 1
[25]. Consequently, the above potential is well-motivated,
both theoretically and phenomenologically.1

The post-inflationary universe is initially smooth, so
even if a potential supports oscillon solutions, an actual
oscillon-dominated phase requires a mechanism for gener-
ating inhomogeneity within the post-inflationary horizon
(see, e.g. [11]). Equation 2 supports parametric reso-
nance when α < 1, which lead to the explosive produc-
tion of φ quanta, and a highly inhomogeneous universe.
However, M is large, the V (φ) effectively quadratic dur-
ing both the last portion of inflation and subsequent os-
cillatory phase, suppressing resonance and oscillon pro-
duction. Conversely, if M is significantly sub-Planckian
we see resonance and oscillons can form. Note that nar-
row resonance also occurs when α > 1, but V (φ) cannot
support oscillons.

In what follows, we first summarize the inflationary
dynamics and describe a Floquet analysis of the resonant
phase. We show that strong resonance and a subsequent
oscillon-dominated phase requires 0 ≤ α . 0.9 and M .
0.05Mpl (Mpl ≡ 1/

√
8πGN ), which may be realized in

the physical scenarios that motivate these models. We
then discuss the cosmological consequences of an oscillon-
dominated phase.

1 Oscillon production in hybrid inflation models is studied in [9].
These models have ns ≥ 1, and are disfavored by observations.
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INFLATIONARY DYNAMICS

The observed amplitude of the primordial fluctua-
tions effectively removes one free parameter from the
potential in equation (2). Further, we will see that we
are primarily interested in models where M is substan-
tially smaller than the Planck mass, so that V (φ) ≈
m2M2(φ/M)2α/2α during inflation.

Astrophysically interesting perturbations are laid
down when the remaining number of e-folds before the
end of inflation, N ∼ 55, though in general, N is a func-
tion of the post-inflationary expansion history [21]. Using
standard slow-roll approximations, the amplitude of the
power spectrum of curvature perturbations is

∆2
R =

1

96π2α3

(
m

Mpl

)2(
M

Mpl

)2−2α

(4αN)1+α. (3)

For a given α and β ≡Mpl/M , we use the above equation
with N = 55 and ∆2

R = 2.4× 10−9 [23] to deduce m.

RESONANCE AND OSCILLONS

Oscillon production at the end of inflation with
U(φ) = −λφ4/4 + g2φ6/6m2 was studied in [11, 13].
When (λ/g)2 � 1, oscillons are copiously generated,
with properties matching analytic predictions [10, 11].
However, an inflationary phase where V (φ) is dominated
by a φ6 term has an unphysical perturbation spectrum.
If the above U(φ) is viewed as a truncation of eq. (2)
then (λ/g)2 ∼ 1, and we cannot appeal to the results of
[10, 11, 13] for the properties of oscillons. Thus, to study
oscillon formation in this physically reasonable scenario,
we rely on numerical simulations.

We can gain a heuristic understanding of oscillon for-
mation by looking at the instability diagram for the
potential in (2), as resonance generates large inhomo-
geneities which then relax to form oscillons [11]. Ignoring
expansion and working in the limit where φ is approxi-
mately homogeneous, Floquet theory allows us to write
the individual momentum modes of φ as

φk = P+(t)eµkt + P−(t)e−µkt (4)

where P±(t) are periodic functions and ±µk are called
Floquet exponents. Our first task is to calculate these ex-
ponents: if the real part of µk, <(µk), is nonzero and its
magnitude is larger than the Hubble parameter, H ∼ t−1,
at the end of inflation, the mode will grow. Roughly
speaking, if |<(µk)|/H >∼ 10, we have strong resonance.
In an expanding universe, φk has a physical wavenum-
ber k/a(t) and thus moves through a number of Floquet
bands as the scale factor, a(t), grows, as shown in Fig-
ure 1. For our potential, with β = Mpl/M , one can
show that the maximum value of |<(µk)|/H as the modes

FIG. 1: Floquet diagram with α = 1/2, β = 100. The stable
regions are dark red. Within the unstable bands, lighter colors
correspond to larger real-valued Floquet exponents. White
lines show k/a(t) for representative modes in an expanding
universe.

traverse the Floquet bands is [|<(µk)|/H]max ≈ A(α)β
where A(α) ≈ (1/2)

[
(1− α)− (1/10)(1− α)2

]
.

We studied the nonlinear dynamics of resonance fol-
lowing inflation driven by eq. (2) using PSpectRe
[26]. PSpectRe solves the fully nonlinear three di-
mensional Klein-Gordon equation in an expanding back-
ground whose behavior is governed by the usual Fried-
man equations, sourced by the average density and pres-
sure. The backreaction of metric perturbations on the
field is ignored. Our simulations begin at the first in-
stant φ̇ = 0, although our results are insensitive to the
details of this choice. The scalefactor a = 1 at the begin-
ning of our simulations. We assume a standard spectrum
of initial vacuum fluctuations, although we checked that
our results are qualitatively insensitive to the detailed
form of the initial conditions. We ignore backreaction of
the metric perturbations on the field evolution – these
can be shown to be small during resonance. The initial
boxsize is L = 25/m with 2563 points in the (comoving)
simulation volume.

A single timeslice of a representative simulation is
shown in Figure 2. Given that oscillons are large over-
densities, a necessary condition for oscillon domination
is that

f =

∫
ρ>2〈ρ〉 ρdV∫

ρdV
, (5)

the fraction of the total energy density contributed by
regions where ρ/〈ρ〉 > 2, is nontrivial. Oscillons are
effectively fixed in space, persisting for a Hubble time
or more, so the overall density in an oscillon-dominated
universe at different times is strongly correlated. Heuris-
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FIG. 2: Oscillon configuration with α = 1/2 and β = 50. The
top plot shows regions where ρ/〈ρ〉 > 4 (transparent) and 12
(solid), while the lower plot shows ρ/〈ρ〉 on a two dimensional
slice through the simulation. Length units are 1/a(t)m, and
these plots were made when a(t) = 5.46.

tically, f >∼ 0.3 is sufficient to guarantee that the field
configuration (and thus the post-inflationary universe as
a whole) was dominated by oscillons. Figure 3 shows f
as a function of α and β, along with the maximal value
of the resonance parameter [|<(µk)|/H]max. We see that
strong resonance, or [|<(µk)|/H]max & 10, is both neces-
sary and sufficient for prompt, copious oscillon formation.

In models for which f is non-zero, it remains approxi-
mately constant for a several Hubble times after the onset
of oscillon domination, demonstrating that this phase is
long-lived, relative to prevailing cosmological time scales.
Unlike the oscillons studied in [10, 11, 13] which have a
stable, radial envelope, Φ(r), which evolves very slowly
with time, here the corresponding envelope is a periodic
function of time, and the oscillon “breathes” in and out.
The detailed dynamics of these oscillon solutions will be
discussed in a future publication, but we have simulated
a single oscillon (ignoring expansion) over a long interval

FIG. 3: The statistic, f , is shown at a(t) = 7 (a(t) = 1 at
the beginning of the simulation) as a function of α and β =
Mpl/M . Contours show maximal value of the [|<(µk)|/H]max.
The thick black contour denotes [|<(µk)|/H]max = 7 whereas
the thin white ones correspond to [|<(µk)|/H]max = 1, 3.

for representative values of α and β after imposing strict
radial symmetry, reducing the problem to a 1+1 PDE.
Even though oscillons are not protected by a conserved
charge and radiate energy [27–29], these simulations sug-
gest that they live long enough for the universe to grow
by a factor of 100 or more, and we expect this to be true
even if the assumption of radial symmetry is dropped.
Also, the quantum radiation will be small in the regime
where the self couplings, such as λ ∼ m2/M2, are small
[29].

CONSEQUENCES AND DISCUSSION

We have demonstrated that for a large class of mod-
els in excellent agreement with the current concordance
cosmology inflation is naturally followed by an oscillon-
dominated phase, provided that the couplings to other
fields are small. These oscillons are generated by para-
metric resonance, which occurs if the inflationary poten-
tial turns over from the slow-roll regime to a quadratic
regime at a scale M �Mpl.

The inflationary models here are self-resonant, so os-
cillon production does not require specific couplings to
other fields. It is likely that any significant couplings
between the inflaton and other fields can inhibit the for-
mation of oscillons, by allowing resonant production of
quanta of these additional fields. Further, couplings to
other fields can reduce the stability of oscillons by pro-
viding an additional channel into which they can radiate
energy. Lastly, the impact of interactions between oscil-
lons is largely unexplored (however, see [35]).

Many resonant models include light fields, leaving the
universe in an intermediate state between matter and ra-
diation [30, 31], but massive self-resonant models lead to
an oscillon-dominated universe that is effectively mat-
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ter dominated. Our simulations do not include local
gravity, but perturbations with sub-horizon wavelengths
will grow gravitationally during the oscillon-dominated
phase. The same behavior is seen in non-resonant models
with an (almost) homogeneous inflaton condensate oscil-
lating in a pure m2φ2 potential [32]. However, in this
case the primordial density fluctuations are O(10−5) at
the scale of the horizon and take a long time to become
nonlinear. By contrast, fluctuations grow rapidly in a
self-resonant model, leading to a significant enhancement
in the primordial power spectrum for high k. The possi-
bility of gravitational collapse and even primordial black
hole formation during this phase must be carefully ana-
lyzed [33, 34]. Given that the oscillons exist on comov-
ing scales vastly shorter than those which contribute to
large-scale structure formation, oscillon formation is un-
likely to directly modify the primordial power spectrum
on present-day astrophysical scales. However, for any in-
flationary model the observed power spectrum is a func-
tion of the post-inflationary expansion history [21, 24].
Thus, it will be important to account for the existence
and duration of any matter-dominated phase, oscillon-
dominated or otherwise, when computing the detailed
predictions of the model.

In summary, we have shown that a significant class of
realistic inflationary models can naturally lead to copi-
ous oscillon production following inflation, and that these
oscillons can – for a time – dominate the overall matter-
density of the universe. This provides a dramatic exam-
ple of the potential importance of nonlinear dynamics in
scalar fields to the properties of the very early universe.
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