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Information and correlations in a quantum system are closely related through the process of mea-
surement. We explore such relation in a many-body quantum setting, effectively bridging between
quantum metrology and condensed matter physics. To this aim we adopt the information-theory
view of correlations, and study the amount of correlations after certain classes of Positive-Operator-
Valued Measurements are locally performed. As many-body system we consider a one-dimensional
array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are
most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on
the quantum phase through a subtle interplay between local interactions and coherence.
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The relation between correlations and measurement
is well known in quantum metrology, where the opti-
mal measurement strategy to extract information has
been thoroughly investigated [1, 2]. In that context
Positive-Operator-Valued Measurements (POVMs) and
Informationally-Complete (IC) measurements are of par-
ticular importance since, contrary to simple projective
measurements, they allow a complete tomography of the
quantum state [3]. They have been playing an important
role also in foundational aspects of quantum mechanics,
quantum information science, as well as in the physics of
dissipative systems [4-7].

In this Letter we aim at establishing a bridge between
quantum metrology and quantum many particles physics.
We consider subsystems A and B in a many-body ground
state, and analyze the correlations resulting from POVMs
performed on one of them, say B. Emphasis will be de-
voted to the optimal correlations, namely the maximal
amount of correlations established between A and B. We
observe that performing a POVM on a given physical sys-
tem is equivalent to performing a projective measurement
on an enlarged system where the original one is coupled
with a given “ancilla” (Naimark’s theorem). Such an an-
cilla can be an appropriate subsystem, and then analyz-
ing correlations induced by a POVM on a local degree of
freedom, say B, is an effective way to study correlations
of higher order (spin-block correlations). Equivalently,
the ancilla can be a suitable environment entangled to
the system, and then correlations can give precious in-
formation on the decoherence of the state of the local
constituent A.

The total amount of correlations in any bipartite
(mixed) quantum state pap is given by the mutual in-
formation: Tap = S(pa) + S(pB) — S(pap), where
S(p) = —Tr[plog,p] is the von Neumann entropy. A
central quantity we will address below is the quantum
conditional entropy Sc, quantifying the ignorance about

the composite system AB, once subsystem B has been
measured with a generic POVM {By}:

Se(pasl{Br}) = pS(p'h) . (1)
k

Here ﬁff])g denotes the state of the composite system AB,

conditioned to a given outcome of Bj: ﬁff,)g = pik[(]l ®
Bk) pap] with I denoting the identity operator on the
subsystem A and pr = Tr[(I ® By)pap]. The global
amount Cap of optimal (classical) correlations between
constituents A and B is established after applying a set
of measurements on B that disturbs the least the part A:

Cap = max [S(pa) — Sc(pasl{Br})] , (2)
{Br}

where the maximization is with respect to the mea-
surement strategy. The quantum discord [8] quantifies
the amount of quantum correlations and is defined as
the difference between total and classical ones: Qap =
Zap — Cap. The maximization in Eq. (2) is generally a
daunting task, since the optimization procedure has to
be performed on the whole set of possible POVMs.

We apply the above notions to the case where A and
B are individual spins of a quantum spin chain, and con-
sider both von Neumann projective measurements Mpmj,
and generalized POVMs Mpovm [9]. We design a strat-
egy to exploit the information input given by the physical
system hosting the two spins. Namely, we assume that
the symmetry of the POVM is fixed by the symmetry of
the local interactions occurring in the physical system.
However, we shall see this is not enough to optimize cor-
relations, as the coherence of the many-body system is
going to play a major role.

Models and measurements.— As many body system
we consider a one dimensional array of spins 1/2 inter-
acting anisotropically along the three spatial directions



with interaction strengths J,, Jy, J., and subjected to a
uniform external field A. The Hamiltonian reads

o AT AT AYAY Az Az Az
H= Z (JIJZ- Oip1 +Jyo707,, + J20i0i+1) — hZUi,
i g

(3)
where 6¢ (o = z,y,2) are the Pauli matrices on site
i. Hereafter we set |J,| = 1 as the energy scale and
work in units of A = 1. At zero temperature different
quantum phases can exist, separated by Quantum Phase
Transitions (QPTs) [10]. Moreover a completely factor-
ized ground state may occur at a specific value of the
field hy [11]. For xyz spin chains of Eq. (3) this is given
by: hy =2y/(1—J.)(J, — J.) [12].

We will discuss Eq. (3) in the following cases: I) The
ferromagnetic Ising chain (J, = J, =0, J, = —1), which
undergoes a QPT at h. = 1, and factorization at hy = 0.
It can be experimentally realized with the magnetic com-
pound CoNby Og [13]. II) The non-integrable antiferro-
magnetic zyz model (J, = J, = 1), with J, = 1/4 (this
is the case experimentally realized with Csy Co Cly [14]).
Such model displays a QPT at h. ~ 3.21 and factoriza-
tion at hy ~ 3.16. III) The antiferromagnetic anisotropic
xxz Heisenberg chain (J, = J, = 1) with J, = 1/2. At
zero field it presents a critical xy phase with quasi-long
range order (quasi-lro) for |J,| < 1; this is separated by
two classical phases with QPTs at J, = £1. For h # 0
the xy phase is a strip in the phase diagram, eventu-
ally turning into polarized phases for sufficiently strong
magnetic field (the factorization phenomenon degener-
ates in the saturation occurring as a first order tran-
sition). Despite local interactions are clearly different,
both the quantum Ising and zyz models display an Ising-
like QPT with Zs-symmetry breaking; the zaz model, in-
stead, is characterized by a critical phase without order
parameter.

We first deal with standard projective measurements
Mpo; = {Bs} along the field direction, defined by

By = (I +6%). Then we engineer a more sophisticated
set of POVMs, such that the symmetry of the measure-
ment keeps track of local interactions between the spins.
Specifically, we look at the interactions J,, Jy, J, enter-
ing Eq. (3), and design the following Moy, = { B }:

{0}

1

g,czz(mak.é), k=1...4, (4)
where & = (6%, 6Y,6%) and da, is such that
61 = a(Jany7J2)7 ﬂ2 = a(J$7_Jya_‘]Z)a 63 =

a(=Jdy, Jy,—J2), a1 = a(—Jy,—Jy,J.) and o=t

\/JE+J2+ J2 (see Fig. 1). For generic J,, Mpovm will
be denoted as Coupling-oriented Informationally Com-
plete (CIC) POVM. The choice of the vectors dj in
Eq. (4) reflects the symmetry of the Hamiltonian by
changing J, — —J, by UHUT, with U* = [], G511
In the isotropic case J, = J, = J., the POVM in Eq. (4)

FIG. 1: (color online). The four vectors entering the POVM
measurement of Eq. (4). They point from the center to non-
adjacent corners of a parallelepiped with edges fixed by the
anisotropic interaction occurring into the system.

degenerates in a Symmetric Informationally Complete
(SIC) POVM [5]. We comment that all the By, do not
depend on the external field explicitly. We shall see that
such a dependence enters in a subtle way related to the
macroscopic order of the system.

In order to compute the amount of correlations be-
tween any two spins at distance r = |A— B|, one needs to
access the single- and two-spin reduced density matrices
pa and pap. Hereafter we focus on the symmetry-broken
ground states of the Hamiltonian in Eq. (3), which is
symmetric under a global phase flip along the z-axis [15].
We observe that the generic two-site reduced density ma-
trices of such states is beyond the so called “X-state”
structure (emerging in symmetric states, and for which
expressions for quantum and classical correlations are
known [16]). Therefore, in the present case, in principle
the optimal correlations might be achieved beyond pro-
jective measurements [17]. To access all the required two-
point correlators, we resort to the density matrix renor-
malization group approach with open boundary condi-
tions [18]. We consider sufficiently long chains, such to
reduce unwanted edge effects and to approach the ideal
thermodynamic limit. For the Ising and the xyx model,
we add a small longitudinal field h, ~ 107 along the xy
plane, to ensure the Zs-symmetry breaking.

Comparison between different measurement
strategies.— We start our analysis by presenting
results obtained for the quantum conditional entropy
Sér) in Eq. (1), probing how the local interactions affect
the measurement, without any further optimization.
Figure 2 displays Sél) for two neighboring spins re-
spectively for the Ising model, the xyx model and the
xxz model in a transverse field h. The total amount of
correlations reflects the main properties of the ground
state: in particular the peaks denote QPT points that
are associated to a divergence in their first derivative,
while factorization fields are marked by the vanishing
of all correlations. In all the three considered spin
systems, measurement performances decrease from the
CIC POVM to the SIC POVM and to the projective
measurement along the computational basis z.

Much larger amounts of correlations can be achieved by
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FIG. 2: (color online). Conditional entropy Sél) for the three
cases: 1) Ising, II) zyx and III) zxzz model in an external
field [see Eq. (3)]. Correlations are considered between two
nearest neighbors at the center of the chain (r = 1); the length
of the chain is L = 200. The various curves correspond to
different measurement strategies on subsystem B: standard
projective measurement along the z direction (black circles),
SIC POVM (red squares), as well as IC POVM set by the
specific interactions of the model (blue diamonds).

performing suitable optimization strategies on the mea-
surements considered above. In the following we apply
two different kinds of optimization: i) We rotate the di-
rection of the elements By, of the projective measurement
Mpmj and of the POVM Mpovm on the Bloch sphere, by
keeping the angles between the vectors @; constant (this
corresponds to a rigid rotation of the experimental ap-
paratus); optimal correlations are thus obtained by max-
imizing over the angles (0, ¢) entering the rotation. i)
In the case of CIC POVM, we independently vary the
three parameters J,, Jy, J,, defining the direction of the
vectors @ in Myeum (see Fig. 1) [19].

In Fig. 3 we display the classical correlations between
two neighboring spins for the three considered models, by
adopting the optimizations discussed above. Similarly to
the quantum conditional entropy, C"=") displays a no-
ticeable dependence on the model and on the magnetic
field. While in the Ising model the CIC angle-dependent
POVM and projective measurement give the same an-
swer, for the zyr and xxz model the angle-dependent
strategy is not optimal and is outperformed by the pro-
jective measurements. The 3-parameters POVM opti-
mizations provide the same correlations of the projec-
tive measurements in the disordered regions and in zxz
model; however, where the order parameter (c*) # 0,
they are still worse than the projective measurement.

A similar analysis of correlations for » > 1 strongly
suggests that the effect of different measurement strate-
gies at long ranges vanishes everywhere but close to the
quantum critical points, where the correlation functions
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FIG. 3: (color online). Same as in Fig. 2, but for the clas-
sical correlations C*) optimized over the given measurement
strategy. In the first three cases, projective measurement, SIC
POVM and IC POVM (see the symbol pattern of Fig. 2), the
optimization in Eq. (2) is performed on the rotation angles
(0, ¢) of the Bloch sphere of subsystem B. The green stars
refer to IC POVM optimized by varying the three parameters
Jo defining the direction of the vectors dy.

FIG. 4: (color online). Quadratic difference between the op-
timal correlations obtained following the four different mea-
surement strategies M described above (see also Fig. 3):

2=3y (C<T) — (Cm))z. Here (C™) denotes the average
correlation with respect to the four M. Data are shown for
the zyx model as a function h and for different r = |A — B).

decays algebraically with r (Fig. 4).

In the disordered phase of the Ising and the xyx model,
where the order parameter (67) = 0, as well as in the zzz
model, 0,,: and ¢op: are fixed to a value independent
by h (see Table I). By analyzing the rotated measure-
ments By, (6, ¢) it turns out that projective measurements
can achieve a local measurement along the eigenvectors
[v) of Gioc = Jo6% + Jyo¥ + J.6% , fixed by the system
Hamiltonian. For both the xyz and Ising model, opti-



mal correlations are attained by using projective mea-
surements along the z axis: By (7/2,0) = %(ﬁ + 67).
This reflects the Zy-symmetry ¢® — —o® of the para-
magnetic phase. On the other hand, the operators of
each optimized 4-elements POVM can be written as:
Bk(eomv(bom) = |1/’Zpt>< Zpt|7 where |wgpt> is of the type
W) = VT = aze®@ort| 1) + T+ a] 1), with &, € C.
It turns out that [¢7") = |v) with ¢ppr = 0 and
& = £ = erarg(aatiay) for projective measurements.
For CIC measurements &, = &), but ¢ # 0; for SIC-
POVM &, # €. We note that for large h, where the
state is nearly fully polarized along z, correlations are
vanishing and therefore measurements along any direc-
tion are optimal. The CIC with three-parameter opti-
mization leads to optimal correlations in the disordered
phase.

In the symmetry-broken phase, optimal angles
(Bopt, Popt) for both Ising and xyz models display a non
trivial dependence on the order parameter, as visible in
Fig. 5. Except for a region close to the QPT, we fitted
our results using the formula 6,,, = A\/B — (67)" + k,
where the parameters A, B, k are model-dependent, while
we imposed n = 8, inspired by the linear variation of 6,y
with h that we observed in the Ising model, and by the
characteristic exponent 8 = 1/8 of its order parameter
at the QPT (see the upper inset of Fig. 5). In some
cases we found significant deviations from such depen-
dence (see Supplementary Material for a detailed discus-
sion of the optimal parameters). Peculiar behaviors arise
close to the QPT, where dramatic changes appear, and
to the factorization points, where an extremal value is
reached. Such behavior is consistent with the interpre-
tation of the factorization phenomenon as a “correlation
transition” resulting from a competition between parallel
and antiparallel entanglement [20, 21]: Optimal correla-
tions arise from the balance of two optimizations involv-
ing the parallel and antiparallel entangled components
(both present in the ground state). The two entangle-
ment components switch each other and an extremal op-
timal angle is reached at hy.

It is interesting to compare the optimal angles in the
Z5 symmetry-broken phase with those in the zy gapless
phase of the zxz model, where the order parameter is
vanishing in a non trivial way because correlations de-
cay algebraically. For both projective and CIC measure-
ments, the optimization in such phase is characterized by
a fixed value of 8¢, Vopt, thus indicating that, because
of quasi-long range order, any preferential measurement
direction is not unique in the phase. Such scenario is con-
firmed by the three-parameters optimized CIC POVM
(last row of Table I).

Discusston.— We analyzed spin-spin correlations that
are established after performing a local measurement on
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FIG. 5: (color online). Optimization parameters for the

nearest-neighbor correlations in the xyz model, after a pro-
jective measurement. The fit in the upper inset (dashed blue
line) is Oopr = 0.824—0.709+/0.0769 — x8. The other optimiza-
tion strategies are discussed in the Supplementary Material.
In the lower inset we display the order parameter (6°) as a
function of h, as extracted from numerical simulations.

one of the two spins in the ground state of a quantum
spin chain. We considered projective measurements as
well as symmetric IC POV Ms; furthermore we engineered
coupling-oriented IC POVMSs with the aim to shed light
on how the optimal measurement can be performed a
priori, once a certain knowledge on the system has been
previously acquired. The measurement protocols were
first tested regardless to adjustable parameters, by look-
ing at the conditional entropy. Then we focused on the
possibility to adjust the measurement on the basis of lo-
cal interactions. Interactions, coherence and symmetry
fix the “optimal flow” of information; the optimal strat-
egy to extract the correlations eventually depends on the
quantum phase.

Specifically, an analysis of the quantum Ising and the
xyx model, both sharing the same kind of Zs-symmetry
breaking QPT (even if with very different local interac-
tions), showed that in the ordered phase the optimal cor-
relation follows the global order, in the sense that the pa-
rameters characterizing the optimal measurement strat-
egy vary with the exponent [ of the order parameter.
Such a result could be useful to heuristically dictate the
optimal measurement strategy also for higher order cor-
relations (between spin-blocks), where the optimization
protocol is not practicable. On the contrary, in the dis-
ordered phase local interactions fiz the optimal strategy,
in the sense that optimal correlations are attained by ful-
filling a local requirement of projecting along oj,.. The
results on the zzz model further support this scenario:
optimal correlations are obtained for measurements re-
specting the in-plane symmetry of the model, for any
fixed direction in the xy plane (there is no preferential
direction because of quasi-lro in the zy critical phase).

Finally we analyzed correlations at long ranges show-



O =m; ¢p2=0,7
VOs3; ¢ = w2+ km

Ising, h > he xyx, h > he rxz, quasi-lro
Proj. 01=7/2;01=0 | 61=7/2; 1 =0 =7/2;Vp
02:91;¢2:ﬂ' 92:01;(;52:71'
CIC 01 =0; Vo1 0 = m; 0=0; Vo

b ~ 1478 + km /2

SIC Gk =T,
oK ~ 0.393 + kr/2

Gk =T
b ~ 1.152 + kr /2

Or, =~ 0.955; ¢, =37/4+ ki
Or, ~ 2.185; ¢y ~ 3.92 + ko

CIC 3-par|J, =1; Jy=J.=0|J =1, J, =J. =0

J. = 0; V(Jz, Jy)

TABLE I: Optimization angles 0,,: € [0, 7] and ¢ope € [0,27) in the disordered phases with vanishing order parameter. k is
any integer positive number. In the last line: optimization directions J, for CIC measures.

ing that, near the QPT, long-range correlations are
strongly affected by the measurement strategies (see
Fig. 4). In the gapped phase any measurement strat-
egy produces the same result, on a length-scale where
the correlation functions themselves are sensible.

Given the relation between optimal correlations and
quantum discord, our results could be important in
many-body implementations of quantum information
protocols. We also comment that, being a single-spin
state fully accessible through Eq. (4), our scheme pro-
vides an effective strategy to perform state tomography
of one of the two spins (a notoriously challenging problem
in quantum magnets).
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