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Black-box superconducting circuit quantization
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We present a semi-classical method for determining the effective low-energy quantum Hamiltonian
of weakly anharmonic superconducting circuits containing mesoscopic Josephson junctions coupled
to electromagnetic environments made of an arbitrary combination of distributed and lumped ele-
ments. A convenient basis, capturing the multi-mode physics, is given by the quantized eigenmodes
of the linearized circuit and is fully determined by a classical linear response function. The method
is used to calculate numerically the low-energy spectrum of a 3D-transmon system, and quantitative
agreement with measurements is found.
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Superconducting electronic circuits containing nonlin-
ear elements such as Josephson junctions (JJs) are of
interest for quantum information processing [1, 2], due
to their nonlinearity and weak intrinsic dissipation. The
discrete low-energy spectrum of such circuits can now
be measured to a precision of better than one part per
million [3]. The question thus naturally arises of how
well one can theoretically model such man-made artifi-
cial atoms. Indeed, increasing evidence indicates that
due to increased coupling strengths [4], current models
are reaching their limits [5–9] and in order to further our
ability to design, optimize and manipulate these systems,
developing models beyond these limits becomes neces-
sary. This is the goal of the present work.

An isolated ideal JJ has only one collective degree of
freedom: the order parameter phase difference ϕ across
the junction. The zero-temperature, sub-gap physics of
this system, with Josephson energy EJ and charging en-
ergy EC , is described by the Cooper-pair box Hamilto-
nian

HCPB = 4EC(N̂ −Ng)
2 − EJ cos(ϕ̂), (1)

where N̂ is the Cooper-pair number operator conjugate
to ϕ̂ and Ng an offset charge. This model is exactly solv-
able in terms of Mathieu functions [10, 11]. The crucial
feature that emerges from this solution is that the charge
dispersion, i.e. the maximal variation of the eigenenergies
with Ng, is exponentially suppressed with EJ/EC while
the relative anharmonicity decreases only algebraically
with a slow power-law in EJ/EC . As a consequence,
there exists a regime with EJ ≫ EC – the transmon
regime – where the anharmonicity is much larger than the
linewidth (e.g. due to fluctuation of the offset chargeNg),
thus satisfying the operability condition of a qubit [12].
This is the regime of interest here.

In order to be useful for quantum information pro-
cessing tasks, several Josephson qubits must be made
to controllably interact with each other and spurious in-
teractions with uncontrolled (environmental) degrees of
freedom must be minimized. In circuit quantum elec-
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FIG. 1. (Color online) Cartoon of a JJ at the center of
a broadband dipole antenna inside a 3D microwave cavity.
The presence of the antenna alters the geometry of all cav-
ity modes. This is illustrated with the lowest energy dressed
mode (full (red) curve). Capturing this effect in the usual
method would require the inclusion of many bare modes of
the empty cavity (dashed curves). This resummation is done
automatically in the method presented here.

trodynamics [2, 11, 13] (cQED), this is achieved by cou-
pling the JJs to a common microwave environment with
a desired discrete mode structure. So far such systems
have mostly been described theoretically by models well
known from quantum optics such as the single-mode
Jaynes-Cummings model and extensions thereof [14].

When applied to superconducting circuits with multi-
level artificial atoms, multi-mode cavities and increased
coupling strengths [4, 6, 7] however, several technical and
practical difficulties with these approaches arise. For ex-
ample, capturing important effects of non-computational
qubit states requires going to high orders in perturbation
theory [15]. Also, determining the bare Hamiltonian pa-
rameters, in terms of which these models are defined, is
cumbersome and requires iterating between experiment
and theory. Perhaps even more important are the short-
comings of the traditional approaches in dealing with
the multiple modes of the cavity. Indeed high-energy,
off-resonant cavity modes have already been measured
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to contribute substantially to the inter-qubit interaction
strength [8, 15] and, via the multi-mode Purcell effect,
to also affect the coherence properties (relaxation and
decoherence) of the qubits [5]. Attempts at including
this multi-mode physics in the standard models however,
lead to difficulties with diverging series and QED renor-
malization issues [8], which to the best of our knowledge
remain unresolved. Fig. 1 illustrates the origin of the
problem with the example of a JJ inside a 3D cavity (3D-
transmon) [3]. The presence of a relatively large metallic
dipole antenna [16] can strongly alter the geometry of
the cavity modes. This essentially classical effect, can be
accounted for precisely only by including a sufficiently
large number of bare modes.

In contrast, we propose to start by considering the cou-
pled but linearized problem in order to find a basis that
incorporates the main effects of the coupling between
multi-level qubits and a multi-mode cavity and then ac-
count for the weak anharmonicity of the Josephson po-
tential perturbatively. The crucial assumption made here
is that charge dispersion effects can be safely neglected.
This is reasonable given that in state-of-the art imple-
mentations of transmon qubits [3, 17], charge dispersion
only contributes a negligible amount to the measured
linewidths. Previous work discussed the nonlinear dy-
namics of a JJ embedded in an external circuit classi-
cally [18]. Here we go one step further and show how the
knowledge of a classical, in principle measurable, linear
response function lets us quantize the circuit, treating
qubits and cavity on equal footing.

Single junction case. We consider a system with a JJ
with bare Josephson energy EJ and charging energy EC ,
in parallel with a linear but otherwise arbitrary electro-
magnetic environment as depicted in Fig. 2 (a). Neglect-
ing dissipation, the unbiased junction alone is described
by the Hamiltonian (1). At low energies, when EJ ≫ EC ,
quantum fluctuations of the phase ϕ across the junction
are small compared with π and, as emphasized in the in-
troduction, the probability of quantum tunneling of the
phase between minima of the cosine potential is negligi-
bly small. It is then reasonable to expand the latter in
powers of ϕ, thus obtaining the approximate circuit rep-
resentation of Fig. 2 (b), in which the spider symbol [18]
represents the purely nonlinear part and LJ = φ0

2/EJ

and CJ = e2/(2EC) the linear parts of the Josephson
element. Here φ0 = ~/(2e) is the reduced flux quantum.
To leading order, the energy of the spider element is given
by Enl = −φ0

2ϕ4/(24LJ).

A quantity of central importance in the following is
the impedance Z(ω) of the linear part of the circuit de-
picted in Fig. 2 (c). The latter is a complex meromorphic
function and by virtue of Foster’s theorem [19, 20] can
be synthesized by the equivalent circuit of parallel LCR
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FIG. 2. (Color online) (a) Schematics of a JJ ((red) boxed
cross) coupled to an arbitrary linear circuit (striped disk).
(b) The Josephson element is replaced by a parallel combi-
nation of: a linear inductance LJ , a linear capacitance CJ

and a purely nonlinear element with energy EJ (1− cos(ϕ))−
(EJ/2)ϕ

2, represented by the spider symbol. (c) The linear
part of the circuit shown in (b) is lumped into an impedance
Z(ω) seen by the nonlinear element. (d) Foster-equivalent
circuit (pole-decomposition) of the impedance Z(ω).

oscillators in series shown in Fig. 2 (d). Explicitly

Z(ω) =

M
∑

p=1

(

jωCp +
1

jωLp

+
1

Rp

)−1

, (2)

where M is the number of modes [21] and we have
adopted the electrical engineering convention of writing
the imaginary unit as j = −i. This equivalent circuit
mapping corresponds, in electrical engineering language,
to diagonalizing the linearized system of coupled har-
monic oscillators. The resonance frequencies of the lin-
ear circuit are determined by the real parts of the poles
of Z or more conveniently by the real parts of the ze-
ros of the admittance defined as Y (ω) = Z(ω)−1, and
for weak dissipation, i.e. Rp ≫

√

Lp/Cp, are given

by ωp = (LpCp)
− 1

2 . The imaginary parts of the roots
(2RpCp)

−1, give the resonances a finite width. The ef-
fective resistances are given by Rp = 1/ReY (ωp) and
the effective capacitances are determined by the fre-
quency derivative on resonance of the admittance as
Cp = (1/2)ImY ′(ωp). Here and in the following the prime
stands for the derivative with respect to frequency. Note
that ImY ′(ω) > 0 [19]. Together this yields a compact
expression for the quality factor of mode p:

Qp =
ωp

2

ImY ′(ωp)

ReY (ωp)
. (3)

When applied to the mode representing the qubit, Eq. (3)
gives an estimate for the Purcell limit on the qubit life-
time T1 = Qqb/ωqb due to photons leaking out of the
cavity.
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In order to derive the effective low-energy quantum
Hamiltonian of the circuit, we next neglect dissipation
(Rp → ∞) and introduce the normal (flux) coordinates
φp(t) = fpe

jωpt + (fp)
∗e−jωpt associated with each LC

oscillator in the equivalent circuit. We can then imme-
diately write the classical Hamiltonian function of the
equivalent circuit as H0 = 2

∑M

p=1(fp)
∗(Lp)

−1fp, where
the subscript 0 indicates that we consider the linear
part of the circuit. Kirchhoff’s voltage law implies that
up to an arbitrary constant, φ(t) =

∑M

p=1 φp(t), where

φ(t) =
∫ t

−∞
V (τ)dτ is the flux coordinate of the junction

with voltage V (t). Note that by the second Josephson
relation, the order parameter phase difference is related
to the latter via ϕ(t) = φ(t)/φ0 (modulo 2π).
Quantization is achieved in the canonical way [22, 23]

by replacing the flux amplitudes of the equivalent oscil-
lators by operators as

f (∗)
p →

√

~

2
Zeff

p a(†)p , Zeff
p =

2

ωpImY ′(ωp)
, (4)

with the dimensionless bosonic annihilation (creation)
operators ap (a†p). Direct substitution yields the Hamil-

tonian H0 =
∑

p ~ωpa
†
pap of M uncoupled harmonic

oscillators (omitting the zero-point energies) and the
Schrödinger operator of flux across the junction is

φ̂ =

M
∑

p=1

√

~

2
Zeff

p

(

ap + a†p
)

. (5)

We emphasize that the harmonic modes ap represent col-
lective excitations of the linear circuit and their frequen-
cies ωp are the equivalent of dressed oscillator frequencies.
The coupling in the linear circuit is treated exactly and
in particular no rotating wave approximation is used.
The Hamiltonian of the circuit including the JJ is

then H = H0 + Hnl, where Hnl = −(φ̂)4/(24φ0
2LJ) +

O((φ̂/φ0)
6). Physical insight may be gained by treating

the nonlinear terms as a perturbation on top of H0 as-
suming the eigenstates |n1, n2, . . . , nM 〉 of the latter with
energies E

(0)
n1,n2,...,nM =

∑

i ni~ωi, to be non-degenerate.
Considering only the leading order φ4 nonlinearity, one
then obtains the reduced Hamiltonian

H4 = H ′
0 +

1

2

∑

pp′

χpp′ n̂pn̂p′ . (6)

Here n̂p = a†pap and H ′
0 = H0 +

∑

p ∆pn̂p in-
cludes a correction to the Lamb-shift given by ∆p =

− e2

2LJ

(

Zeff
p

∑

q Zeff
q − (Zeff

p )2/2
)

. We have further in-

troduced the generalized χ-shift χpp′ between modes p
and p′. Clearly, αp ≡ χpp is the anharmonicity of the
first excited state (self-Kerr) of mode p while χpp′ = χp′p

with p 6= p′ is the state-dependent frequency shift per
excitation (cross-Kerr) of mode p due to the presence of

a single excitation in mode p′. Explicitly we find

χpp = −Lp

LJ

CJ

Cp

EC , χpp′ = −2
√
χppχp′p′ . (7)

Note that all modes acquire some anharmonicity due
to the presence of the nonlinear JJ. There is thus no
strict separation of qubit and cavity anymore. Collo-
quially, a mode with strong (weak) anharmonicity will
be called qubit-like (cavity-like). Interestingly, in this
lowest order approximation, the anharmonicity of mode
p is seen to be proportional to the inductive partici-
pation ratios [18] ip ≡ Lp/LJ and inversely propor-
tional to the capacitive participation ratio cp ≡ Cp/CJ .
In the absence of a galvanic short of the junction in
the resonator circuit, as is the case e.g. for a trans-
mon qubit capacitively coupled to a cavity, it follows
from the sum rule limω→0 [Z(ω)/(jω)] =

∑

p Lp = LJ

that ip ≤ 1. Similarly, in the absence of any capaci-
tance in series with CJ , it follows that cp ≥ 1, because
limω→0 [jωZ(ω)] =

∑

p C
−1
p = C−1

Σ , where CΣ = CJ+C‖

and C‖ is the total capacitance in parallel with CJ . Hence
we see that in this experimentally relevant case, the ef-
fective anharmonicity of the qubit-like mode is always
reduced as compared with the anharmonicity of the bare
qubit given by −EC [11]. Remarkably, in this approx-
imation we find (see Eq. (7)) that the cross-Kerr shift
between two modes is twice the geometric mean of the
anharmonicities of the two modes.
We emphasize that the above expressions do not how-

ever account for higher order effects in anharmonicity
such as the change of sign of the cross-Kerr shift ob-
served in the straddling regime [11, 24]. Such effects are
however fully captured by the full model H = H0 +Hnl,
which can be solved numerically. Remarkably, because
the dressed modes already resum all the bare harmonic
modes, typically only a few dressed modes M∗ ≪ M
need to be included for good convergence, thus consid-
erably reducing the size of the effective Hilbert space,

which scales as
∏M∗

p=1(Np + 1) where Np is the maximal
allowed number of excitations in mode p (e.g. Np = 1 in
a two-level approximation).
Charge dispersion. By assumption charge dispersion

effects are neglected in the above approach. One may
however ask how the charge dispersion of an isolated JJ is
affected when the latter is coupled to a cavity. As in the
Caldeira-Leggett model [25], the coupling between the
JJ and Harmonic oscillators suppresses the probability
of flux tunneling and hence reduces charge dispersion of
the qubit further. A simple estimate of the suppression
factor is provided by the probability P0 of leaving the
circuit in the ground state after a flux tunneling event
and is found to be given by the “Lamb-Mössbauer” factor

P0 ≈ e
− 1

2

∑

p 6=qb

(

δq2

2Cp

)
/

(~ωp), where the sum excludes the
qubit mode and δq = CJφ0/τ is the charge (momentum)
kick generated by a φ0 flux slip through the JJ of duration
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ν01 (GHz) νc (GHz) ν02 (GHz) αqb (MHz) χ (MHz) LJ (nH) CJ (ff)
7.77 (7.763) 8.102 (8.105) 15.33 (15.333) -210 (-193) −90 (−80.6) 5.83 7.6
7.544 (7.54) 8.126 (8.05) 14.808 (14.830) -280 (-249) −30 (−33.0) 6.12 9.2
7.376 (7.376) 7.858 (7.864) 14.489 (14.495) -264 (-257) −37.5 (−38.7) 6.67 4.0
7.058 (7.045) 8.005 (8.023) 13.788 (13.794) -328 (-295) −13.2 (−13.3) 7.45 5.2
6.808 (6.793) 8.019 (8.017) 13.286 (13.294) -330 (-293) −8 (−8.4) 7.71 7.8
6.384 (6.386) 7.832 (7.823) 12.45 (12.449) -318 (-324) −5.4 (−7.6) 9.40 0.34

TABLE I. Low-energy spectrum (ν01, νc, ν02), qubit anharmonicity (αqb) and state-dependent cavity shift (χ) of six 3D-
transmons. Results are shown in the format: experiment (theory). The theory values are obtained from a least square fit
in CJ of the numerically computed lowest three energy levels of the φ6 model. The fitted values of CJ are given in the last
column. Their order of magnitude (a few femto-farads) agrees with estimates based on the sizes of the junctions. The Josephson
inductances LJ are obtained from room-temperature resistance measurements of the junctions.

τ and Cp = (1/2)ImY ′(ωp). Thus our assumption of
neglecting charge dispersion of the qubit is well justified.
Interestingly though, each eigenmode of the system in-

herits some charge dispersion. This effect, essentially a
consequence of hybridization, is of particular importance
for applications such as quantum information storage in
high-Q cavities coupled to JJs and is the subject of work
in progress.
Generalization to N junctions. The approach can be

extended to circuits with multiple JJs connected in paral-
lel to a common linear circuit. Details about the deriva-
tion are given in the supplementary material [26] and we
here only state the results. For N qubits, the resonance
frequencies of the linear part of the circuit are deter-
mined by the zeros of the admittance Yk(ω) ≡ Zkk(ω)

−1

for any choice of reference port k = 1, . . . , N , where Z is
the N×N impedance matrix of the linear part of the cir-
cuit with a port being associated with each junction. The
flux operators of the N junctions, with reference port k,
are given by (l = 1, . . . , N)

φ̂
(k)
l =

M
∑

p=1

Zlk(ωp)

Zkk(ωp)

√

~

2
Zeff

kp

(

ap + a†p
)

, (8)

where Zeff
kp = 2/[ωpImY ′

k(ωp)]. Note that the resonance
frequencies are independent of the choice of reference
port, while the eigenmodes do depend on it. In lowest
order of PT and in the φ4 approximation, we find

αp = −12βpppp, χqp = −24βqqpp, q 6= p, (9)

as well as the correction to the Lamb-shift ∆p = 6βpppp−
12

∑

q βqqpp. Here βqq′pp′ =
∑N

s=1
e2

24L
(s)
J

ξsqξsq′ξspξsp′ ,

and choosing the first port as the reference port (k = 1),

ξsp =
Zs1(ωp)
Z11(ωp)

√

Zeff
1p . Notice that the Cauchy-Schwarz

inequality implies that |χqp| ≤ 2
√
αqαp. Also, if q and

q′ refer to two different qubit-like modes, then χqq′ is
a measure for the total interaction strength (cavity me-
diated and direct dipole-dipole coupling) between these
two qubits.
Comparison with experiment. As a demonstration of

this method, we apply it to the case illustrated in Fig. 1

of a single JJ coupled to a 3D cavity [3]. The ad-
mittance at the junction port Y is a parallel combi-
nation of the linearized qubit admittance and the ad-
mittance Yc of the cavity-antenna system, i.e. Y (ω) =
jωCJ − j/(ωLJ) + Yc(ω). The junction is assumed to be
dissipationless corresponding to a Purcell-limited qubit
and ohmic losses of the cavity are included in Yc, which is
complex. The Josephson inductance LJ is deduced from
the measured junction resistance at room-temperature
RT , extrapolating it down to the operating tempera-
ture [27] of 15mk and using the Ambegaokar-Baratoff
relation, EJ = h∆/(8e2RT ). CJ – the only free parame-
ter – is obtained by fitting the lowest three energy levels
of the numerical solution of the φ6 model to the measured
spectrum [3]. Although Yc may in principle be obtained
from current-voltage measurements, this is not practical
in this system, where the antenna is hard to access non-
invasively, being inside a closed high-Q cavity. Instead
we use a finite element High Frequency Simulation Soft-
ware (HFSS) and obtain Yc(ω) by solving the Maxwell
equations numerically. Details on this simulation step
are provided in the supplementary material [26].

From the zeros of the imaginary part of the admittance
and their slopes we build and diagonalize the φ6 Hamilto-
nian in a truncated Hilbert space, keeping in total three
dressed modes (one qubit and two cavity modes) and
allowing for maximally ten excitations per mode. The
results of fitting the low-energy spectrum of six different
samples are presented in Table I, where we also compare
the predicted and measured qubit anharmonicities and χ-
shifts. We find agreement with the measured spectrum
at the sub per cent level and to within ten per cent with
the measured anharmonicities and χ-shifts.

Conclusion and outlook. We have presented a sim-
ple method to determine the effective low-energy Hamil-
tonian of a wide class of superconducting circuits con-
taining lumped or distributed elements. This method
is suitable for weakly nonlinear circuits, for which the
normal modes of the linearized classical circuit provide
a good basis in the quantum case. For an N qubit
system it requires only the knowledge of an N × N
(classical) impedance matrix. By working in a basis of
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dressed states, the parameters that appear in the Hamil-
tonian incorporate much of the renormalization induced
by the coupling between a multi-level artificial atom
and a multi-mode resonator. Consequently, the number
of free parameters is considerably reduced as compared
with standard models based on the Jaynes-Cummings
paradigm expressed in terms of the experimentally in-
accessible bare parameters. We have demonstrated the
usefulness of this method in designing superconducting
quantum information processing units by computing the
low-energy spectrum of a 3D-transmon. Finally, this
model may represent a suitable starting point for fu-
ture investigations of the emerging ultra-strong coupling
regime of cQED.
During completion of this work we became aware of

related work by Bourassa et al. [28].
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