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Role reversal in a Bose-condensed optomechanical system
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We analyze the optomechanics-like properties of a Bose-Einstein condensate (BEC) trapped inside
an optical resonator and driven by both a classical and a quantized light field. We find that this
system exhibits a nature of role reversal between the matter-wave field and the quantized light field.
As a result, the matter wave field now plays the role of the quantized light field, and the quantized
light field behaves like a movable mirror, in contrast to the familiar situation in BEC-based cavity
optomechanics [Brennecke et al., Science 322, 235 (2008); K. W. Murch et al., Nat. Phys. 4,
561 (2008)]. We demonstrate that this system can lead to the creation of a variety of nonclassical
matter-wave fields, in particular Schrödinger cat states, and discuss several possible protocols to
measure their Wigner function.
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Optomechanics is a fast-progressing area of research
that merges techniques and approaches from fields rang-
ing from atomic, molecular and optical physics to
nanoscience and to condensed matter physics. There
are two major approaches to this field: a top-down ap-
proach, exploiting a range of resources from nanoscience,
advanced materials, and cryogenics, and a bottom-up
approach that relies largely on developments in ultra-
cold atomic science and cavity QED. Cavity optomechan-
ics finds its origin in ideas developed by Braginski and
coworkers in the context of the interferometric detection
of gravitational waves [1]. Its more recent focus is di-
rected in large part to the challenge of operating me-
chanical oscillators deep in the quantum regime, with
a motivation ranging from fundamental physics tests to
high-precision quantum metrology, and from the under-
standing of the quantum-classical interface to the realiza-
tion of interfaces for quantum information networks [2].
Recent highlights include the successful cooling of op-
tomechanical systems to within a fraction of their quan-
tum mechanical ground state [3].

Parallel developments in the bottom-up approach have
used a cloud of ultracold atoms as a mechanical element
interacting with light [4, 5]. In these realizations, the role
of the movable mirror is played by a centroid or internal
motion of an ultracold gas, for instance a Bose-Einstein
condensate (BEC). A number of fundamental effects have
already been demonstrated, including the onset of several
quantum phase transitions as well as the quantum back-
action of a single optical photon. Hybrid optical systems
that couple nanoscale systems to atomic systems are also
of much interest, as they combine relatively robust me-
chanical devices with the remarkable precision measure-
ments available in AMO science.

This paper considers a new bottom-up realization of
a cavity optomechanical system where the roles of the
optical and matter-wave fields are reversed: the role of
the effective oscillating mirror is now played by an ex-

citation of a mode of an optical cavity, while the usual
role of light is now played by a trapped Bose conden-
sate. In other words, the dynamics of the cavity mode,
as an optomechanical mirror, is governed by the “radi-
ation pressure” from a matter-wave field. We discuss a
number of properties of that system, demonstrating that
it can be utilized to generate Schrödinger cat states and
near-number states of the matter-wave field. We also
draw an analogy between this system and a cavity-QED
situation to show how it can be used to nondestructively
detect the matter-wave field and reconstruct its Wigner
function.

We consider a scalar BEC confined in a three-
dimensional trap located inside a single-mode unidirec-
tional ring high-Q optical resonator. It is driven by a
classical laser field of frequency Ωp and wave vector kp,
and the scattered light of frequency ωc and wave vector
kc is collected along the axis of the resonator, see Fig. 1.
Such a system has been realized and manipulated in re-
cent experiments on BEC superradiance in a cavity [6].

Treating the incident laser field classically and the scat-
tered field quantum mechanically, their interaction with
the condensate is described by the Hamiltonian

H = ~

∫

drΨ̂†
e(r)

[

Ωp

2
ei(kp·r−ωpt) + gcĉ e

ikc·r

]

Ψ̂g(r) + h.c.

(1)
Here Ψ̂e and Ψ̂g are the field annihilation operators for
atoms in the excited and ground electronic state, respec-
tively, Ωp is the Rabi frequency of the pumping laser,
and ĉ is the photon annihilation operator for the cavity
mode, with vacuum Rabi frequency gc.

For large atom-field detunings ∆ it is possible to elim-
inate adiabatically the upper electronic state. Keeping
only the lowest-order term in the scattering field, and in
the rotating wave approximation, the atom-field interac-
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FIG. 1. Schematic of the BEC-optical fields system and simplified

level diagram of the condensed atoms, driven by a classical field of

Rabi frequency Ωp and a quantized field of vacuum Rabi frequency

gc.

tion reduces then to

H ≈ ~|Ωp|2
2∆

∫

drΨ̂†
g(r)Ψ̂g(r)

+
~Ωpg

∗
c

2∆

∫

dr
[

Ψ̂†
g(r)Ψ̂g(r)ĉ

†ei∆k·r + h.c.
]

, (2)

where ∆k = kp − kc.
The first term in Eq. (2) is a constant ac Stark shift

caused by the pump field. In the following we renormalize
it into the definition of the frequency of the trap potential
of the ground-state atoms. The second term describes
the absorption of laser light followed by scattering into
the cavity mode and the reverse process, with a recoil
of wave vector ∆k. Expanding the field operator Ψ̂g(r)
in terms of the eigenstates of the three-dimensional trap,
Ψ̂g(r) =

∑

n ânφn(r), where ân are the corresponding bo-
son annihilation operators for atoms and n ≡ (nx, ny, nz)
is a triple index, that part of the interaction can be ex-
pressed as

V = ~

∑

n,m

Gn,mâ†nâmĉ† + h.c, (3)

where

Gn,m = (Ωpg
∗
c/2∆)

∫

drφ∗
n(r)φm(r)ei∆k·r (4)

are center of mass (CM) motional state dipole transition
moments, some of which are illustrated in Fig. 2.
As discussed in Ref. [7], for atoms initially in the trap

ground state and large scattering angles, ∆k · L ≫ 1
where L is the characteristic scale of the condensate in
the direction of ∆k, one find that for short times the
transition m = 0 → n > 0 dominates and triggers a su-
perradiant scattering of the condensate. In contrast, the
present work considers a situation where the condition
∆k · L ≪ 1 is satisfied. In the case, Gn,m is sharply
peaked around the transition m = 0 → n = 0, a situ-
ation similar to the Lamb-Dicke limit for trapped ions.
For experimental setup as shown in Fig. 1, the condi-
tion can easily be achieved by a collinear arrangement
for the pump and cavity field. For non-collinear case, as-
suming kp ≈ kc = 2π/λ, the condition requests the angle
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FIG. 2. Normalized absolute value of the transition moments

|G0,m| between the trap ground state and its excited states as a

function of the recoil momentum ∆k (in unit of L−1).

θ ≪ λ/2πL. As a result, a feasible angle in experiments
prefers a BEC with a size smaller than the optical wave-
length. That can be achieved by confining BEC on atom
chips [8].

Under the condition discussed above, the single-mode
approximation is safe, and we have

V ≈ ~G
(

ĉ† + ĉ
)

â†â, (5)

where G ≡ G0,0 and â†â ≡ â†0â0. This is the same form
as in the familiar optomechanical interaction in ultracold
atomic systems [4], except that the roles of photons and
atoms are exchanged. The optomechanical interaction is
here proportional to the “intensity” of the matter wave
â†â and the “position” quadrature ĉ†+ ĉ of the intracav-
ity field. This coupling can be thought of as describing
the “radiation pressure” from a massive Schrödinger field
driving an “optical oscillator”, instead of real radiation
pressure from a massless optical field driving a mechan-
ical oscillator. Note that here the “position” of the “op-
tical oscillator”, as a single-mode optical field canonical
quadrature, could in principle be characterized by stan-
dard optical homodyne detection.

The effective total Hamiltonian of the light-BEC sys-
tem reduces then to

H = ~ω0â
†â+ ~ωmĉ†ĉ+ ~G

(

ĉ+ ĉ†
)

â†â (6)

where the cavity-pump detuning ωm ≡ ωc−ωp plays the
role of the natural frequency of the “optical oscillator”.
It can cover a wide range of values, from ∼ 2π× 102MHz
to ∼ 2π × 10Hz, and can even be negative, which is im-
possible for a mechanical oscillator. The frequency ω0 is
the renormalized ground-state center-of-mass frequency
of the trapped BEC, typically of the order of 2π× 10kHz
for relatively tight traps. For 87Rb atoms, a classical
Rabi frequency Ωp = 2π× 1GHz, gc = 2π× 10MHz, and
∆ = 2π×5GHz, we find G ≈ 2π×1MHz. As in the usual
optomechanical interaction, the sign of the optomechan-
ical coupling G can be changed by changing the sign of
cavity detuning, in this case the atom-field detuning ∆.
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In the usual optomechanics situation the movable mir-
ror or trapped ultracold atomic system acts as a Kerr-
type medium for the cavity field, resulting in a series
of nonlinear optical effects that include optical bista-
bility [9], chaos [10], and squeezing [11]. More gener-
ally, Ref. [12] showed that a broad variety of nonclassical
states of the cavity field can be prepared by means of the
optomechanical coupling. In the present situation with
its reversal of roles between light and the mechanical os-
cillator, one finds similarly that a rich variety of nonclas-
sical states can be generated in the BEC. In particular,
in case the cavity field is initially in a vacuum state |0〉c
and the BEC in a coherent state |α〉a we find that in the
interaction picture the final state of the system is

|Ψ(t)〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
eiΛ

2n2(ωmt−sinωmt)|n〉a ⊗ |Λnη〉c,

(7)
where |n〉a are number states of the BEC, |Λnη〉c are co-
herent states of the cavity field of complex amplitude
Λnη, with η = 1 − exp(−iωmt), and we have intro-
duced the coefficient Λ ≡ −G/ωm. In the resolved side-
band limit of cavity optomechanics, ωm ≫ κ where κ
is the resonator width, Λ > 1 would correspond to the
strong-coupling regime, where a single photon substan-
tially modifies the resonator properties. In the present
case this parameter is likewise a measure of the nonlin-
earity of the dynamics, as we shall see. But in contrast
to the usual situation, the “strong coupling regime” can
now be easily reached by simply increasing the Rabi fre-
quency Ωp of the classical driving field.
At times ωmt = 2mπ, m integer, the state of the

cavity field returns to the vacuum while the state of
BEC can take the form of various “Schr̈ı¿1

2dinger-cat”
states, depending on the value of Λ. For instance, when
Λ2 = 1/4m, the BEC is in the two-component cat state

|φ〉a =
1+ i

2
|α〉a +

1− i

2
| − α〉a. (8)

The choice of other values of Λ can also lead to the gen-
eration of multicomponent cat states [12].
Except at those times, the state (7) is an entangled

state of the cavity field and the BEC. The entanglement is
most pronounced at ωmt = (2m+1)π, providing a route
to the preparation of nonclassical state of the condensate
via conditional measurements on the cavity field. In par-
ticular, a measurement of the quadrature X̂ = (ĉ+ ĉ†)/2,
that is, the “position” of the equivalent mirror will force
the BEC into a state

|φ̃〉a ∝ e−
|α|2

2

∞
∑

n=0

αn

√
n!
ei(2m+1)Λ2n2πfn(X)|n〉a, (9)

where the number state distribution is dominates by the
scalar products

|fn(X)|2 = |〈X |2Λn〉c|2 ∝ exp[−8Λ2(n−X/2Λ)2]. (10)

Provided that X/2Λ is near an integer m and Gaussian
width σ = 1/4Λ ≪ 1, the coefficients |fn(X)|2(n 6= m)
are then strongly suppressed so that the state |φ̃〉a is well
approximated by the number state |m〉a.
The preparation of near number states via conditional

measurements of the cavity field provides a indirect way
to extract the atom number statistics of the condensate.
However the number statistics alone are not sufficient to
verify the emergence of atomic Schrödinger cat states. To
gain the necessary phase information, one can adapt an
optical method that involves the mixing of the field to be
characterized with a reference classical field with an ad-
justable relative phase [13]. This can be achieved in prin-
ciple in a way recently demonstrated [14] for the atomic
homodyne detection of entangled twin-atom states in a
spinor BEC. The idea is to mix the state to be charac-
terized with another macroscopically populated atomic
state that serves as a reference, for instance via a mi-
crowave field induced transition. The relative phase be-
tween the two atomic states can be adjusted through the
phase of the microwave field.

In one possible measurement protocol, the optome-
chanical interaction G is rapidly switched off at a time t
when the cavity field is back in the vacuum and the con-
densate in a Schr̈ı¿1

2dinger-cat state, simply by switch-
ing off the classical driving field of Rabi frequency Ωp

in a time short compared to the BEC decoherence time.
The BEC atoms are then coupled by a microwave field
to another, macroscopically populated atomic state. As
a result the density operator of the system becomes
ρ̂ = D̂(β)ρ̂aD̂(−β) ⊗ |0〉〈0|c, where the atomic displace-
ment operator D̂(β) describes the mixing with a refer-
ence field of complex amplitude β. Turning then the
optomechanical coupling back on with Λ ≫ 1/4, we find
that after a time ωmt = π, the probability of getting the
value X for the “position” quadrature of the optical field
is given by

Pc(X) = 〈X |Tra[Û(π)ρ̂Û−1(π)]|X〉 =
∑

n

Pa(n)|fn(X)|2,

(11)
where Tra is a partial trace on the atomic system,
Pa(n) = a〈n|D̂(β)ρ̂aD̂(−β)|n〉a is the atom number
statistics for the displaced matter-wave field, and Û(t)
is the time evolution operator. Figs. 3(a) and 3(b) show
the in-phase and out-of-phase values of Pa(n) for |α| = 2
and |β| = 4. In the in-phase case, Pa(n) is the sum of
two quasi-Poissonian distributions peaked around |α+β|2
and | − α + β|2. When α and β are π/2 out of phase,
the interference between the two atomic fields results in
Pa(n) exhibiting a Poisson envelope with superimposed
modulations.

A variation on a protocol inspired by cavity QED ex-
periments [15] allows to reconstruct the full Wigner func-
tion of the field. To see how this works, we start from
the general expression of the Wigner function of a single-
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FIG. 3. Atom number distribution Pa(n) for the displaced

Schrödinder cat state (8), with |α| = 2 and |β| = 4. (a) α and

β are in phase. (b) α and β are π/2 out of phase.

mode field in the number state basis [16],

Wa(β) =
2

π

∞
∑

n=0

(−1)na〈n|D̂(−β)ρ̂aD̂(β)|n〉a, (12)

where the (−1)n factor comes from the expectation value
of the number parity operator.
To determine the Wigner function (12) through a mea-

surement of the cavity field, we again assume that the
system is in the uncorrelated initial state ρ̂a ⊗ |0〉 〈0|c,
and perform first a displacement of the matter-wave field
before switching on the classical driving field of Rabi fre-
quency Ωp. The probability of finding the cavity field in
the n-photon state is then found to be

Pc(n) =
∞
∑

m=0

( |Ληm|2n
n!

)

e−|Ληm|2
a〈m|D̂(β)ρ̂aD̂(β)|m〉a.

(13)
Comparing this result with the expression (12) shows
that by chosing |Λη|2 = π we have simply

Wa(β) =
2

π

∞
∑

n=0

Pc (n) (1 + i)n. (14)

That approach is similar in spirit to a method used in Ref.
[15] to measure the Wigner function of the intracavity
microwave field in a micromaser via detection of the state
of the atoms that drive that field. One disadvantage
is that it relies on the acquisition of a large amount of
experimental data as well as on the the need to resolve
the exact photon number n.
An alternative method that yields a direct measure-

ment of Wa(β) can be implemented if the cavity con-
tains a single photon, a situation that might be achieved
using a photon blockade effect, maybe by including in
addition to the off-resonant condensate atoms a single
resonant atom coupled to the light field in the strong-
coupling regime of cavity QED [17], or perhaps via a
movable mirror [18]. While this would increase signifi-
cantly the complexity of the experiment, the advantage
of that approach is that the Wigner function is a directly
measured quantity [19].
With the cavity field initially in a mixture ρ̂c =

ρ0|0〉〈0| + ρ1|1〉〈1|, displacing the matter wave field as

before by an adjustable amount β, and then switching
on the optomechanical interaction, we find that the dif-
ference in probabilities ∆Pc = Pc(1)−Pc(0) of measuring
no photon and one photon in the resonator is

∆Pc = (ρ1 − ρ0)
∞
∑

n=0

a〈n|D̂(−β)ρ̂aD̂(β) cos(2Λ|η|n)|n〉a.

(15)
By adjusting the parameter Λ and/or the interaction
time so that 2Λ|η| = π, the atomic Wigner function takes
the simple form

Wa(β) =
2∆Pc

π(ρ1 − ρ0)
. (16)

In summary we have investigated a new configuration
of a BEC-based cavity optomechanical system character-
ized by a role reversal of the light and matter-wave fields
as compared to the usual situation. We showed how this
system can not only efficiently prepare nonclassical states
of the BEC, but can also nondestructively characterize
them and even reconstruct their Wigner function. This
extends the research of cavity optomechanics into the
realm of quantum matter wave optics and opens the way
to a rich new direction of investigations, with potential
in quantum information processing and quantum metrol-
ogy. The proposed schemes are experimentally challeng-
ing, and a number of issues need to be addressed, from
the quantum efficiency of the detectors to technical and
fundamental noise issues.
One advantage of the optomechanical system consid-

ered here over conventional one is that the “optical oscil-
lator”, a single-mode optical field in a high-Q cavity, is
immune to the thermal and clamping noises. It is only
subject to the vacuum fluctuations, an effective zero tem-
perature reservoir. The condensate can also be consid-
ered to be effectively at zero temperature, so the main
source of environment decoherence are expected to be
three-body collisions, which result in fluctuations in the
atom number 〈â†â〉, shot noise due to cavity losses, and
the intensity and phase fluctuations of the classical driv-
ing field Ωp. (We remark that for quantum-degenerate
atomic systems s-wave collisions are a coherent nonlinear
mechanism that does not result in decoherence.) Since
the quantum states of photons and atoms are highly en-
tangled, these decoherence mechanisms are expected to
have nontrivial effects on the generation of nonclassical
atomic states [12]. The role of these and other decoher-
ence and noise mechanisms will be the object of a detailed
future paper.
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