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Computer simulations are used to study composition fluicinain disordered diblock copolymer melts over
a range of values of the chain lengtNs and test several theories for the structure fast@r). Specifically, we
test the random-phase approximation (RPA), which is baseiself-consistent field treatment of fluctuations,
the Fredrickson-Helfand theory, which was designed td tteacribe fluctuations near the order-disorder tran-
sition, and the relatively new renormalized-one-loop (R@leory. The results confirm claims that the RPA is
exact in the limitN — oo and that the ROL yields the dominant corrections to the RPhiwia systematic
expansion in powers a¥ ~'/2, and show that the ROL is much more accurate than either tidery.

At the level of chemical repeat units, polymers are struc-monomers. We define
turally similar to smaller organic molecules. Many aspects
of the behavior of pon_mer liquids over Ie_lrger length _scale_s S(q) = /dr <6w(r)6w(0)>eiq'r’ 1)
can, however, be described by coarse-grained models irhwhic
the details of local structure are absorbed into a few param., _ . e
~ = wheredy(r) = [dca(r) — dep(r)]/2 is a composition field,
eters. The most successful theory of dense polymer I'qu'dﬁndq — |q|. Here,dci(r) is the deviation of the number

?u%h gsCIt:)Iock cop-olyr;r.]er tnrwleltts |stba}s§_d _gn ? sr:ahf—consstelg ncentratior; (r) of ¢ monomers from its spatial average. In
leld ( ) approximation that treats individual chainsass r a disordered diblock copolymer meft(¢) has a maximum at

dom walks in an inhomogeneous chemical potential Iandé nonzero wavenumbet .[2]

scape. The approximations underly_mg this and other COArSE The RPA [2] predicts an inverse structure factor of the form
grained theories depend on the existence of a separation of

length scales between the size of a chemical repeat unit and NS—L(¢) = F(aR.a) — 2v. N 2
that of a polymer coil in the limit of very long polymers. e (a) (4Bg0) = ZxeN. @

Diblock copolymer melts can exhibit both a disordered (hO'Here,Rgo = (N/6)'/2bis the radius of gyration of a random
mogeneous) phase and a variety of periodic ordered ph&kes.yalk polymer with a statistical segment lengtlz is the over-
The structure facto§(¢) of the disordered phase can be mea-a|| monomer concentration, and is an effective interaction
sured by small angle x-ray (SAXS) and neutron (SANS) scatparameter that quantifies the excess free energy of mixing A
tering experiments. Such experiments are typically aralyz and B monomersF(z) is a known analytic function [2] that
by fitting S(q) to predictions of the so-called random phasenas a minimum at a nonzero value. The RPA thus predicts
approximation [2] (RPA). The RPA is based on the same; maximum inSy(¢) at a nonzero wavenumbef = z*/Ryo
SCF approximation as that often used to describe the orderqat is independent of., and a divergence a$(¢*) when

phasessS(q) was derived [2] by using SCF theory to estimate | | N reaches a spinodal valigg.N), = F(z*)/2. For sym-
the free energy cost of infinitesimal composition fluctuasio - metric diblock copolymersy* = 1.95, F(2*) = 21.99, and

of wavenumbey. (xeN)s = 10.495. A subscript 0’ is used here to denote RPA
It has long been suspected that the RPA and SCF approxpredictions forS(q), R, andg*.
mations are exact in the limi¥ — oo of infinitely long poly- Since the 1980s, several related coarse-grained theories

mers. Direct evidence for this, however, remains limited- R have been developed that attempt to improve upon the RPA
centwork by our group [11-14] and others [6—9] has yielded gor S(4). [3—6, 10-14] These theories all predict corrections
more sophisticated theory f6i(g), the renormalized one-loop  to the RPA with a relative magnitude proportional to a small
(ROL) theory, that reduces to the RPA in the limit — co,  parameteiV—'/2, whereN = N(cb?)2. Physically,N'/? is
but that also appears to yield the first correction to the RPAa measure of polymer overlap: Itis proportional to the numbe
within a systematic expansion in powersnof /2. R3]V of chains, each of volum& = N/c, that can pack into

In this Letter, we present the first quantitative test ofthe volumeR? pervaded by a single chain of size~ /Nb.
this ROL theory, while also testing the RPA and the olderThe first and most influential such theory, by Fredrickson and
Fredrickson-Helfand [3] theory of pre-critical fluctuai® Helfand [3] (FH), was designed to describe only the domi-
with an unprecedented level of precision. We focus, specifinant effects of strong fluctuations very near the order+diso
cally, on testing whether the RPA and ROL do indeed becomeransition (ODT) for symmetric diblock copolymers. More
systematically more accurate with increasiNg by examin-  recent work has yielded a family of closely related ROL theo-
ing how the discrepancies between these theories and simuldies of corrections to both the underlying random-walk niode
tion results vary with changes in chain length of single-chain correlations [7-9] and to the RPA f6q)

We consider the structure factdét(q) in a dense liquid [6, 11-14] in both polymer mixtures and diblock copolymer
of symmetric AB diblock copolymers, each containing  melts. One distinguishing feature of these ROL theoridsds t



introduction of systematic methods to separate non-usater
effects of monomer-scale correlations from universal fong
wavelength phenomena, and to absorb the effects of short-
wavelength correlations into renormalized values of th& RP
parameter$ and x.. The ROL theory forS(q) appears to

be the first correction to the RPA within an expansion of
c¢NS~1(q) in powers of N~1/2, Because the validity of this
expansion is not restricted to the vicinity of the ODT, thelRO
theory thus has a much broader potential range of validiég th
the older FH theory. The ROL theory of corrections to the
random-walk model for single chains in homopolymer melts,
by the Strasbourg group,[7, 8] is contained within the ROL
theory for blends and diblocks as a special case, and has al-

ready been shown to agree quantitatively with hompolyme[:IG 1. ¢ dependence af(q) for N = 64, ata = 0, for L = 30

simulations.[7, 9] o o . andL = 43, in units withoc = 1. The RPA and ROL predictions are
Both the FH and ROL theories yield predictions 7" (q)  shown by dashed and solid lines, respectively.

as asumS—'(q) = S, (q) + 65~ *(q) in which S5 *(q) is
given by Eq. (2), and in whichN6S~1(q) is a function of
the form chains ofN =16, 32, 64, and 128 beads in periodic L x L
C1n we1/2 . cubic boxes.
cNOS™ (q) = N~ /"H(qRg0, Xo V). (3) We have conducted replica-exchange [23] hybrid MC sim-
ulations, using replicas with different valueswoft the same
T. The simulations combine a hybrid MC move, [24] in which
short MD simulations are used as proposed MC moves, with
end-swap, reptation, and double-rebridging [25] MC moves.
Values ofg¢* and S(¢*) were determined by fitting discrete
values ofS(q) at allowed wavevectors to a smooth function
of ¢. Results are presented only for for valuesxdbr which
eNS™H(g") = 2[(xeN)s — x2N], (4) the peakinS(q) is broad enough to allow a reliable fit, and
for which consistent results were obtained with two values o
where (x.N)s = 10.495. The FH theory for symmetric L.
copolymers yields a functiohl = B[(x.N)s — x:iN]~'/? To test the RPA, FH, and ROL theories, one needs an unam-
that is independent of, with B ~ 280. The ROL theory biguous way to determine values for the parameiensd y.
[11, 14] yields an expression fdf (R0, x5 IN) as a sum of  that these theories all require as inputs. Our compariséths w
Fourier integrals, which must be evaluated numerically. theory all use a valuk = 1.410 that was obtained [9] by ex-
Several limitations of the RPA have been documented byrapolating results obtained from homopolymer£ 0) melts
both experiments [20-22] and previous simulations.[1§-190f varying N, and defining?® = limy ., 6RZ2(N)/N. This
These all show a decreasejinand a nonlinear dependence of definition ofb is required for consistency with the ROL theory
S~1(g*) on1/T near the ODT that are not consistent with the for single-chain statistics[8], which yields a random waiky
RPA. Previous simulations have not, however, provided veryn the limit N — co. An analogous procedure for estimating
precise quantitative tests of either the RPA or FH theofiés.  y.(«) is discussed below.
main reason for this has been the absence of a clear prescrip-Limit y. = 0: We first consider the special case= 0, or
tion for how to relate the parametgg that is required as an e 5 = €44, for whichy, = 0. This corresponds to a SANS
input to these theories to the parameters that are cortriolle experiment in which A and B monomers are labelled by dif-
a simulation. The analysis presented here uses severdl novferential deuteration, but are otherwise identical. Iis timit,
methods to avoid or minimize this ambiguity. the ROL and RPA predictions differ only as result of pre-
Our simulations use a simple bead-spring model similar talicted O(N~'/2) deviations from random walk intramolec-
that of Grest and coworkers. [18] We use a purely repul-ular statistics.[14]

qRg0

Here, H is a dimensionless function for which the FH and
ROL theories yield different expressions. In both theqriés
depends upon the self-consistently determined peak itgyens
S(¢*). Equivalently, we may expred$ in terms of an “appar-
ent” interaction parametey’; that we define by simply fitting
the predicted peak intensiy{(¢*) to the RPA, defining

sive Lennard-Jones nonbonded pair potential, wjtfir) = Fig. 1 shows simulation results and predictions $r;)
eij [4(r/o) 2 —4A(r/o) 6 4+ 1] for r < re, with r. = vs. qR, in systems withV = 64 (N = 246) anda = 0.
2Y/6g, and a harmonic bond potentiah.a(r) = x(r —  Here,R2, = Nb?/6, with b = 1.410. The RPA (dashed
lp)?/2. All work presented here uses parameters, = line) slightly underestimates both the peak amplitéig*)

e = kT, lg = o, ands = 400kTo 2, with a monomer and peak wavenumber. The ROL prediction (solid line),
concentrationc = 0.70~3. The magnitude 45 of the AB however, fits the data almost perfectly, with no adjustakble p
repulsion is controlled by a parameter= 45 — 44 that  rameters. Agreement is similar for other chain lengths.
indirectly controlsy.. We have simulated liquids containing  Peak wavenumber: Fig. 2 shows the evolution of the peak
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whicha = e — €44 is treated as a small parameter. Pertur-
bation theory is a natural description of the homogeneas st
of either a blend or a diblock copolymer melt, because the ho-
mogeneous phase remains stable only wheés less than a
critical value that decreases B&V with increasingV, guar-
anteeing the accuracy of a Taylor expansion for sufficiently
large N. By comparing theV-dependence of the free energy
predicted by perturbation theory to that predicted by thé RO
0 theory, it was shown [15] that the parameterin the ROL

44 - I theory is given td)(«) by

az(o0)
o) ~ 5
7 N =128 xe() kT ®)
©ak wherez(oo) is the N — oo limit of an “effective coordina-
- S tion number”z(N) = [ dr g(r; N)u(r), in whichg(r; N) is
' a - the inter-molecular radial distribution function in a reface
g—ttt]—rt 1L homopolymer ¢ = 0) melt containing chains of lengthy.
XiN XiN For the model considered here, we previously obtained [15]

z(00) = 0.2965 by numerically extrapolating results of simu-
FIG. 2. Peak wavenumbef', normalized by the RPA predictiafg, lations of hompolymer melts with varyiny.
Vs xa N for N =16, 32, 64, and 128N = 62, 123, 246, 492).  pggk intensity: Fig. 3 shows how the inverse peak intensity
Resultg fqr two box size§ are shown for eactV. ROL predictions ¢NS~1(¢q*) varies withy. NV, plotted using Eg. (5) fox.(a).
are solid lines. Several qualitative features are immediately apparemhuSi
lation results foreN.S—1(q*) are greater than the RPA pre-
diction (suppressed fluctuations) feg N 2 6, as predicted
by the FH theory, but are actually less than the RPA predic-
tion (enhanced fluctuations) far. N < 6. The ROL theory
predicts this change in sign of the deviation, and accuratel
predicts the value of. N ~ 6 at which the change in sign oc-
curs. It also correctly predicts that results for differehain
lengths nearly converge at this point. The FH predictioms fo
N = 64 (upper panel) adequately describes the simulation
results in the limit of very strong fluctuationg{N 2 15,
cNS~1(g*) < 1) for which it was designed, but differs quali-
ol A tatively from both the ROL theory and the data for lower val-
q*/qs < 1 for X;_N z 5 ROL pred|ct|o_ns (sohd_llnes) repro-  yes ofy. N. ROL prediction for the longest two chain lengths
duce this behavior quite accurately, with no adjustablaipar (N = 64 and 128) are instead accurate over the entire range
eters. Moreover, the ROL predictions seem to become systeniz Y. N studied. For the shortest chain showh £ 32), ROL
atically more accurate with increasing, and are extremely reqictions are accurate for smgllV, but differ significantly
accurate for the longest chain. This rapid convergenceesf pr ¢, simulation results for largey. N. Results forV = 16

diqtions and simulgtion results with increasing is _strong. (not shown) differ even more from ROL prediction at large
evidence for the claim [11, 12] that the ROL theory is the f'rStvalues ofy. .
correction to the RPA within a systematic expansion. We believe that the failure of the ROL f6i(q) for small N
Estimating x.(«): In all of the theories considered here, and largey. V is primarily due to a failure of our first-order
the degree of incompatibility between A and B monomers isperturbation approximation for.(a), Eq. (5). The compari-
characterized by an effective interaction paramgter We  son of theory and simulation in Fig. 3 is subject to two known
can directly test predictions for the dependenc&6f*) on  types of error: (i) Errors in the ROL theory itself, due tortru
Xe, however, only if we can obtain an independent estimate oation of an expansion in powers &f /2 atO(N ~1/2), and
how x.(c) depends om. The comparisons shown in Figs. 1 (ji) Errors in Eq. (5) fory.(a), due to truncation of a Taylor
and Fig. 2 did not require such an estimate. expansion of.(a) atO(«). The value ofx required to obtain
We have chosen to estimagg(«) using a method proposed a specific estimate fog. NV increases linearly with increasing
in Ref. 15, which yields a rigorous expression far{«) to  x.N atfixedN, and also increases &N with decreasingVv
first order ina: within a Taylor expansion in powers of The  at fixedy.N. The fact that large discrepancies between ROL
method is based on a perturbation theory for the free endrgy @redictions and simulation results f8(¢*) are found only for
structurally symmetric blends of and B homopolymer with  small N and largey.N, corresponding to particularly large
a pair potential of the formu;;(r) = e;;u(r) used here, in  values ofa, suggest that these discrepancies are probably due

wavenumberg* with changes ino. Here, we plot the ra-
tio ¢*/q¢ of ¢* to the RPA predictiory; = 1.95/Ry0 Vs.
the quantityy’ N defined in Eq. (4). Recall that} is di-
rectly related to the peak intensity. This plot thus showekpe
wavenumbews. a measure of the peak intensityq*), plot-
ted so thatS(¢*) — co asx* N — 10.495.

Simulation results for* decrease monotonically with in-
creasingy: or «, dropping 15-20 % over the range shown, as
found previously.[19] Note that" /¢ > 1 for small values of
X: N, consistent with the behavior of Fig. 1 far = 0, but



eNS™(g")/2

@

eNS~Y(g*)/2

(b)

FIG. 3. Inverse peak intensitg. x. NV, plotted using Eqg. (5) to esti-
matex.(«a), with z. = 0.2965. Panel (a) shows results fof = 64
compared to the RPA (straight dashed line), FH (dot-dashecey
and ROL (solid lines). Panel (b) showé = 32, 64, and 128 with
RPA and ROL predictions. Results for two valued cdire shown for
each chain lengtiv.

primarily to errors of type (ii). This is also suggested bg th
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here. The ability of the ROL to make accurate predictions
even for rather short chains suggests that it may be useful as
a tool for interpreting results of experiments on blends and
block copolymers of short, strongly interacting polymeursd
for interpreting and extrapolating results of atomistimsia-
tions of relatively short chains. Our results provide theac
est available evidence that the RPA is indeed exact in the lim
N — o0, and strongly support the claim that the ROL theory
yields the first correction to the RPA within a systematic ex-
pansion. The net effect is to significantly extend the known
range of validity, and thus the potential usefulness, ofdiie
alytic theory of dense polymer liquids.

This work was supported by NSF grant DMR-097338 and
the Minnesota Supercomputer Institute.

fact that much smaller errors are seen for short chains in Fig

2, which does not rely on an estimate pf(«), and thus is

not subject to this source of error. We will show elsewhere
that the discrepancy between ROL predictions and simulatio

results forS(q*) for largea can be almost entirely removed

if we treaty.(«) as a nonlinear function af (but notN) that

we fit to the data. We have restricted ourselves here, however

to comparisons that involve no adjustable parameters.

We have presented an unusually systematic simulation

study of the behavior af'(¢) in AB diblock copolymer melts

over a range of chain lengths, and compared the results to
several theories. The use of theoretically motivated proce

dures for estimating the RPA parametérand x., defined

by extrapolation taV = oo, allowed much more quantita-

tive comparisons to theory than was previously possible Th

range of values ofV studied hereN < 500, overlaps the
lower end of the range studied in experiments, for whi¢h

is typically 10® — 10%. The new ROL theory is shown to be
much more accurate than either the RPA or ROL theories, and
to be strikingly accurate for the longest chain lengthsistlid
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