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Computer simulations are used to study composition fluctuations in disordered diblock copolymer melts over
a range of values of the chain lengthsN , and test several theories for the structure factorS(q). Specifically, we
test the random-phase approximation (RPA), which is based on a self-consistent field treatment of fluctuations,
the Fredrickson-Helfand theory, which was designed to treat describe fluctuations near the order-disorder tran-
sition, and the relatively new renormalized-one-loop (ROL) theory. The results confirm claims that the RPA is
exact in the limitN → ∞ and that the ROL yields the dominant corrections to the RPA within a systematic
expansion in powers ofN−1/2, and show that the ROL is much more accurate than either oldertheory.

At the level of chemical repeat units, polymers are struc-
turally similar to smaller organic molecules. Many aspects
of the behavior of polymer liquids over larger length scales
can, however, be described by coarse-grained models in which
the details of local structure are absorbed into a few param-
eters. The most successful theory of dense polymer liquids
such as block copolymer melts is based on a self-consistent
field (SCF) approximation that treats individual chains as ran-
dom walks in an inhomogeneous chemical potential land-
scape. The approximations underlying this and other coarse-
grained theories depend on the existence of a separation of
length scales between the size of a chemical repeat unit and
that of a polymer coil in the limit of very long polymers.

Diblock copolymer melts can exhibit both a disordered (ho-
mogeneous) phase and a variety of periodic ordered phases.[1]
The structure factorS(q) of the disordered phase can be mea-
sured by small angle x-ray (SAXS) and neutron (SANS) scat-
tering experiments. Such experiments are typically analyzed
by fitting S(q) to predictions of the so-called random phase
approximation [2] (RPA). The RPA is based on the same
SCF approximation as that often used to describe the ordered
phases:S(q) was derived [2] by using SCF theory to estimate
the free energy cost of infinitesimal composition fluctuations
of wavenumberq.

It has long been suspected that the RPA and SCF approxi-
mations are exact in the limitN → ∞ of infinitely long poly-
mers. Direct evidence for this, however, remains limited. Re-
cent work by our group [11–14] and others [6–9] has yielded a
more sophisticated theory forS(q), the renormalized one-loop
(ROL) theory, that reduces to the RPA in the limitN → ∞,
but that also appears to yield the first correction to the RPA
within a systematic expansion in powers ofN−1/2.

In this Letter, we present the first quantitative test of
this ROL theory, while also testing the RPA and the older
Fredrickson-Helfand [3] theory of pre-critical fluctuations
with an unprecedented level of precision. We focus, specifi-
cally, on testing whether the RPA and ROL do indeed become
systematically more accurate with increasingN , by examin-
ing how the discrepancies between these theories and simula-
tion results vary with changes in chain lengthN .

We consider the structure factorS(q) in a dense liquid
of symmetric AB diblock copolymers, each containingN

monomers. We define

S(q) ≡
∫

dr 〈δψ(r)δψ(0)〉eiq·r, (1)

whereδψ(r) ≡ [δcA(r) − δcB(r)]/2 is a composition field,
and q ≡ |q|. Here, δci(r) is the deviation of the number
concentrationci(r) of imonomers from its spatial average. In
a disordered diblock copolymer melt,S(q) has a maximum at
a nonzero wavenumberq∗.[2]

The RPA [2] predicts an inverse structure factor of the form

cNS−1

0
(q) = F (qRg0)− 2χeN. (2)

Here,Rg0 = (N/6)1/2b is the radius of gyration of a random
walk polymer with a statistical segment lengthb, c is the over-
all monomer concentration, andχe is an effective interaction
parameter that quantifies the excess free energy of mixing A
and B monomers.F (x) is a known analytic function [2] that
has a minimum at a nonzero valuex∗. The RPA thus predicts
a maximum inS0(q) at a nonzero wavenumberq∗0 ≡ x∗/Rg0

that is independent ofχe, and a divergence ofS(q∗) when
χeN reaches a spinodal value(χeN)s ≡ F (x∗)/2. For sym-
metric diblock copolymers,x∗ = 1.95, F (x∗) = 21.99, and
(χeN)s = 10.495. A subscript ‘0’ is used here to denote RPA
predictions forS(q), Rg andq∗.

Since the 1980s, several related coarse-grained theories
have been developed that attempt to improve upon the RPA
for S(q). [3–6, 10–14] These theories all predict corrections
to the RPA with a relative magnitude proportional to a small
parameterN̄−1/2, whereN̄ ≡ N(cb3)2. Physically,N̄1/2 is
a measure of polymer overlap: It is proportional to the number
R3/V of chains, each of volumeV = N/c, that can pack into
the volumeR3 pervaded by a single chain of sizeR ∼

√
Nb.

The first and most influential such theory, by Fredrickson and
Helfand [3] (FH), was designed to describe only the domi-
nant effects of strong fluctuations very near the order-disorder
transition (ODT) for symmetric diblock copolymers. More
recent work has yielded a family of closely related ROL theo-
ries of corrections to both the underlying random-walk model
of single-chain correlations [7–9] and to the RPA forS(q)
[6, 11–14] in both polymer mixtures and diblock copolymer
melts. One distinguishing feature of these ROL theories is the
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introduction of systematic methods to separate non-universal
effects of monomer-scale correlations from universal long-
wavelength phenomena, and to absorb the effects of short-
wavelength correlations into renormalized values of the RPA
parametersb andχe. The ROL theory forS(q) appears to
be the first correction to the RPA within an expansion of
cNS−1(q) in powers ofN̄−1/2. Because the validity of this
expansion is not restricted to the vicinity of the ODT, the ROL
theory thus has a much broader potential range of validity than
the older FH theory. The ROL theory of corrections to the
random-walk model for single chains in homopolymer melts,
by the Strasbourg group,[7, 8] is contained within the ROL
theory for blends and diblocks as a special case, and has al-
ready been shown to agree quantitatively with hompolymer
simulations.[7, 9]

Both the FH and ROL theories yield predictions forS−1(q)
as a sumS−1(q) = S−1

0
(q) + δS−1(q) in which S−1

0
(q) is

given by Eq. (2), and in whichcNδS−1(q) is a function of
the form

cNδS−1(q) = N̄−1/2H(qRg0, χ
∗

aN). (3)

Here,H is a dimensionless function for which the FH and
ROL theories yield different expressions. In both theories,H
depends upon the self-consistently determined peak intensity
S(q∗). Equivalently, we may expressH in terms of an “appar-
ent” interaction parameterχ∗

a that we define by simply fitting
the predicted peak intensityS(q∗) to the RPA, defining

cNS−1(q∗) ≡ 2[(χeN)s − χ∗

aN ], (4)

where (χeN)s = 10.495. The FH theory for symmetric
copolymers yields a functionH = B[(χeN)s − χ∗

aN ]−1/2

that is independent ofq, with B ≃ 280. The ROL theory
[11, 14] yields an expression forH(qRg0, χ

∗

aN) as a sum of
Fourier integrals, which must be evaluated numerically.

Several limitations of the RPA have been documented by
both experiments [20–22] and previous simulations.[16–19]
These all show a decrease inq∗ and a nonlinear dependence of
S−1(q∗) on1/T near the ODT that are not consistent with the
RPA. Previous simulations have not, however, provided very
precise quantitative tests of either the RPA or FH theories.The
main reason for this has been the absence of a clear prescrip-
tion for how to relate the parameterχe that is required as an
input to these theories to the parameters that are controlled in
a simulation. The analysis presented here uses several novel
methods to avoid or minimize this ambiguity.

Our simulations use a simple bead-spring model similar to
that of Grest and coworkers. [18] We use a purely repul-
sive Lennard-Jones nonbonded pair potential, withvij(r) =
εij

[

4(r/σ)−12 − 4(r/σ)−6 + 1
]

for r < rc, with rc =

21/6σ, and a harmonic bond potentialvbond(r) = κ(r −
l0)

2/2. All work presented here uses parametersεAA =
εBB = kT , l0 = σ, andκ = 400kTσ−2, with a monomer
concentrationc = 0.7σ−3. The magnitudeεAB of theAB
repulsion is controlled by a parameterα = εAB − εAA that
indirectly controlsχe. We have simulated liquids containing
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FIG. 1. q dependence ofS(q) for N = 64, atα = 0, for L = 30
andL = 43, in units withσ ≡ 1. The RPA and ROL predictions are
shown by dashed and solid lines, respectively.

chains ofN =16, 32, 64, and 128 beads in periodicL×L×L
cubic boxes.

We have conducted replica-exchange [23] hybrid MC sim-
ulations, using replicas with different values ofα at the same
T . The simulations combine a hybrid MC move, [24] in which
short MD simulations are used as proposed MC moves, with
end-swap, reptation, and double-rebridging [25] MC moves.
Values ofq∗ andS(q∗) were determined by fitting discrete
values ofS(q) at allowed wavevectors to a smooth function
of q. Results are presented only for for values ofα for which
the peak inS(q) is broad enough to allow a reliable fit, and
for which consistent results were obtained with two values of
L.

To test the RPA, FH, and ROL theories, one needs an unam-
biguous way to determine values for the parametersb andχe

that these theories all require as inputs. Our comparisons with
theory all use a valueb = 1.41σ that was obtained [9] by ex-
trapolating results obtained from homopolymer (α = 0) melts
of varyingN , and definingb2 ≡ limN→∞ 6R2

g(N)/N . This
definition ofb is required for consistency with the ROL theory
for single-chain statistics[8], which yields a random walkonly
in the limitN → ∞. An analogous procedure for estimating
χe(α) is discussed below.

Limit χe = 0: We first consider the special caseα = 0, or
εAB = εAA, for whichχe = 0. This corresponds to a SANS
experiment in which A and B monomers are labelled by dif-
ferential deuteration, but are otherwise identical. In this limit,
the ROL and RPA predictions differ only as result of pre-
dictedO(N̄−1/2) deviations from random walk intramolec-
ular statistics.[14]

Fig. 1 shows simulation results and predictions forS(q)
vs. qRg0 in systems withN = 64 (N̄ = 246) andα = 0.
Here,R2

g0 ≡ Nb2/6, with b = 1.41σ. The RPA (dashed
line) slightly underestimates both the peak amplitudeS(q∗)
and peak wavenumberq∗. The ROL prediction (solid line),
however, fits the data almost perfectly, with no adjustable pa-
rameters. Agreement is similar for other chain lengths.

Peak wavenumber: Fig. 2 shows the evolution of the peak
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FIG. 2. Peak wavenumberq∗, normalized by the RPA predictionq∗0 ,
vs χ∗

aN for N =16, 32, 64, and 128(N̄ = 62, 123, 246, 492).
Results for two box sizesL are shown for eachN . ROL predictions
are solid lines.

wavenumberq∗ with changes inα. Here, we plot the ra-
tio q∗/q∗

0
of q∗ to the RPA predictionq∗

0
= 1.95/Rg0 vs.

the quantityχ∗

aN defined in Eq. (4). Recall thatχ∗

a is di-
rectly related to the peak intensity. This plot thus shows peak
wavenumbervs. a measure of the peak intensityS(q∗), plot-
ted so thatS(q∗) → ∞ asχ∗

aN → 10.495.

Simulation results forq∗ decrease monotonically with in-
creasingχ∗

a orα, dropping 15-20 % over the range shown, as
found previously.[19] Note thatq∗/q∗0 > 1 for small values of
χ∗

aN , consistent with the behavior of Fig. 1 forα = 0, but
q∗/q∗0 < 1 for χ∗

aN >∼ 5. ROL predictions (solid lines) repro-
duce this behavior quite accurately, with no adjustable param-
eters. Moreover, the ROL predictions seem to become system-
atically more accurate with increasingN , and are extremely
accurate for the longest chain. This rapid convergence of pre-
dictions and simulation results with increasingN is strong
evidence for the claim [11, 12] that the ROL theory is the first
correction to the RPA within a systematic expansion.

Estimating χe(α): In all of the theories considered here,
the degree of incompatibility between A and B monomers is
characterized by an effective interaction parameterχe. We
can directly test predictions for the dependence ofS(q∗) on
χe, however, only if we can obtain an independent estimate of
howχe(α) depends onα. The comparisons shown in Figs. 1
and Fig. 2 did not require such an estimate.

We have chosen to estimateχe(α) using a method proposed
in Ref. 15, which yields a rigorous expression forχe(α) to
first order inα within a Taylor expansion in powers ofα. The
method is based on a perturbation theory for the free energy of
structurally symmetric blends ofA andB homopolymer with
a pair potential of the formuij(r) = εiju(r) used here, in

whichα ≡ εAB−εAA is treated as a small parameter. Pertur-
bation theory is a natural description of the homogeneous state
of either a blend or a diblock copolymer melt, because the ho-
mogeneous phase remains stable only whenα is less than a
critical value that decreases as1/N with increasingN , guar-
anteeing the accuracy of a Taylor expansion for sufficiently
largeN . By comparing theN -dependence of the free energy
predicted by perturbation theory to that predicted by the ROL
theory, it was shown [15] that the parameterχe in the ROL
theory is given toO(α) by

χe(α) ≃
αz(∞)

kT
(5)

wherez(∞) is theN → ∞ limit of an “effective coordina-
tion number”z(N) ≡

∫

dr g(r;N)u(r), in whichg(r;N) is
the inter-molecular radial distribution function in a reference
homopolymer (α = 0) melt containing chains of lengthN .
For the model considered here, we previously obtained [15]
z(∞) = 0.2965 by numerically extrapolating results of simu-
lations of hompolymer melts with varyingN .

Peak intensity: Fig. 3 shows how the inverse peak intensity
cNS−1(q∗) varies withχeN , plotted using Eq. (5) forχe(α).
Several qualitative features are immediately apparent: Simu-
lation results forcNS−1(q∗) are greater than the RPA pre-
diction (suppressed fluctuations) forχeN >∼ 6, as predicted
by the FH theory, but are actually less than the RPA predic-
tion (enhanced fluctuations) forχeN <∼ 6. The ROL theory
predicts this change in sign of the deviation, and accurately
predicts the value ofχeN ≃ 6 at which the change in sign oc-
curs. It also correctly predicts that results for differentchain
lengths nearly converge at this point. The FH predictions for
N = 64 (upper panel) adequately describes the simulation
results in the limit of very strong fluctuations (χeN >∼ 15,
cNS−1(q∗) <∼ 1) for which it was designed, but differs quali-
tatively from both the ROL theory and the data for lower val-
ues ofχeN . ROL prediction for the longest two chain lengths
(N = 64 and 128) are instead accurate over the entire range
of χeN studied. For the shortest chain shown (N = 32), ROL
predictions are accurate for smallχeN , but differ significantly
from simulation results for largerχeN . Results forN = 16
(not shown) differ even more from ROL prediction at large
values ofχeN .

We believe that the failure of the ROL forS(q) for smallN
and largeχeN is primarily due to a failure of our first-order
perturbation approximation forχe(α), Eq. (5). The compari-
son of theory and simulation in Fig. 3 is subject to two known
types of error: (i) Errors in the ROL theory itself, due to trun-
cation of an expansion in powers of̄N−1/2 atO(N̄−1/2), and
(ii) Errors in Eq. (5) forχe(α), due to truncation of a Taylor
expansion ofχe(α) atO(α). The value ofα required to obtain
a specific estimate forχeN increases linearly with increasing
χeN at fixedN , and also increases as1/N with decreasingN
at fixedχeN . The fact that large discrepancies between ROL
predictions and simulation results forS(q∗) are found only for
smallN and largeχeN , corresponding to particularly large
values ofα, suggest that these discrepancies are probably due
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FIG. 3. Inverse peak intensityvs. χeN , plotted using Eq. (5) to esti-
mateχe(α), with zc = 0.2965. Panel (a) shows results forN = 64
compared to the RPA (straight dashed line), FH (dot-dashed curve)
and ROL (solid lines). Panel (b) showsN = 32, 64, and 128 with
RPA and ROL predictions. Results for two values ofL are shown for
each chain lengthN .

primarily to errors of type (ii). This is also suggested by the
fact that much smaller errors are seen for short chains in Fig.
2, which does not rely on an estimate ofχe(α), and thus is
not subject to this source of error. We will show elsewhere
that the discrepancy between ROL predictions and simulation
results forS(q∗) for largeα can be almost entirely removed
if we treatχe(α) as a nonlinear function ofα (but notN ) that
we fit to the data. We have restricted ourselves here, however,
to comparisons that involve no adjustable parameters.

We have presented an unusually systematic simulation
study of the behavior ofS(q) in AB diblock copolymer melts
over a range of chain lengths, and compared the results to
several theories. The use of theoretically motivated proce-
dures for estimating the RPA parametersb andχe, defined
by extrapolation toN = ∞, allowed much more quantita-
tive comparisons to theory than was previously possible. The
range of values ofN̄ studied here,N̄ ≤ 500, overlaps the
lower end of the range studied in experiments, for whichN̄
is typically 103 − 104. The new ROL theory is shown to be
much more accurate than either the RPA or ROL theories, and
to be strikingly accurate for the longest chain lengths studied

here. The ability of the ROL to make accurate predictions
even for rather short chains suggests that it may be useful as
a tool for interpreting results of experiments on blends and
block copolymers of short, strongly interacting polymers,and
for interpreting and extrapolating results of atomistic simula-
tions of relatively short chains. Our results provide the clear-
est available evidence that the RPA is indeed exact in the limit
N → ∞, and strongly support the claim that the ROL theory
yields the first correction to the RPA within a systematic ex-
pansion. The net effect is to significantly extend the known
range of validity, and thus the potential usefulness, of thean-
alytic theory of dense polymer liquids.

This work was supported by NSF grant DMR-097338 and
the Minnesota Supercomputer Institute.
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