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Abstract 

A hierarchical multiscale modeling approach, incorporating Molecular Dynamics and Finite 

Element techniques, was used to study parametrically diffusion regimes through nanoconfined 

fluid.  Novel parameters which determine the character of the diffusion regime and diffusion 

kinetics within the nanoscale confined fluids were established by exploring diffusion where the 

interface effects at the solid surface are important.  New diffusion transport characteristics are 

established when nanochannel confining dimension approaches 3-4 sizes of diffusing 

molecules, which also marks peripheries of the non-Fickian transport regime.  
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Confined nano- or micro-scale fluidic systems are found widely in natural geological 

formations (e.g. sedimentary rocks [1]) and biology (e.g. cellular pores [2]), or in devices 

containing nanochannels or nanopores.  Many nanofluidic technologies are implemented in 

biomedical applications [3-5], where mass exchange is the governing process. In nano-confined 

structures solid surfaces can alter both fluid and solute properties at the interface [6, 7], 

resulting in the dominance of surface effects over volumetric material properties.  In diffusive 

mass transport of a solute through a fluid, both the fluid and solute may interact with the solid 

surfaces [8, 9] bounding the diffusion domain that may alter diffusion characteristics near the 

fluid-solid interface [10, 11].  When the diffusive domain is confined by solid surfaces of small 

lengths, like in nanochannels or nanopores, interface interactions may profoundly change 

diffusion resulting in deviations from Fick’s law.  Although non-Fickian diffusion has been 

discussed for decades [12, 13] and nanochannel structures appeared available for studies in the 

mid-nineties [14, 15], the causes of non-classical diffusion transport regimes are still not fully 

understood.   

In this Letter, we apply a hierarchical multiscale modeling approach to elucidate the impact 

of interface and nanochannel structure effects on diffusion regimes through nanoconfined 

fluid.  Traditional continuum approaches for modeling nanoconfined diffusion are inadequate, 

since they omit interfacial effects.  To overcome the limitations of classical diffusion modeling 

and prediction, we have recently developed a hierarchical computational approach that bridges 

nanoscale interface effects with a discretized continuum Finite Element (FE) method [16, 17].  

This new computational approach relies on a diffusivity scaling function derived from a 

diffusion coefficient profile at the interface of the nanochannel with the use of Molecular 
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Dynamics (MD) simulations.  The diffusivity scaling function S(c,h) was evaluated for glucose as 

a model for neutral small molecules [18] (Figure 1A).  The function S(c,h) rescales an 

experimental bulk diffusion coefficient DB so that the effective diffusivity depends on the local 

concentration c and the proximity to surface h: D(c,h)=S(c,h)·DB(c).  This methodology was 

incorporated in the FE method [19], used to model nanochannels, and it was quantitatively and 

qualitatively validated against experiments [16].  The basic mass balance equation, which also 

includes Fick’s law 

         (1) 

is 

        (2) 

where J is the mass flux, c(xi,t) is concentration at a spatial point with coordinates xi and at a 

time t; D depends in general on xi and on c; q(xi,t) is a source term, and summation over the 

repeated index is implied (i=1,2,3).  By using a standard Galerkin procedure, this nonlinear 

differential equation is transformed into a linear incremental-iterative system of balance 

equations for a finite element assemblage [20].  
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Figure 1. Nanochannel model. A) The model consists of nanochannel with length L and 

height H connecting two reservoirs (Vin and Vout) with different concentrations c at time t=0.  

The left side of the nanochannel depicts representative diffusive flux field that depends on the 

proximity to surface h; the gray gradient on the right side depicts decreasing diffusivity by 

approaching surface, and this decrease is modeled by using S(c,h).  B) Calculated cumulative 

mass release M(t)/M∞ through 1 µm long nanochannel with three nanochannel heights using 

D(c,h).  M(t)/M∞ of 5 nm nanochannel assuming D(const) (red dashed line) is presented for 

comparison with the case D(c,h).  The inset shows the scaling the function S(c,h) for 0 and 1 M 

solutions used in the calculations. 

 

We have studied diffusion in nanochannels with 0.5, 1, 3, 10 µm lengths (L) and 1, 3, 5, 10, 

20, 50 nm heights (H) with fixed width of 1 µm as depicted in Figure 1A; these geometries 

covered characteristic dimensions of representative nanofluidic structures as reviewed in [21].  

The nanochannel connects donor (inlet) and acceptor (outlet) reservoirs with 1∙10-6 μL volume 

each.  At time zero, the donor reservoir was filled with 1 M solution, while the other reservoir 
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had zero concentration.  The cumulative mass release (Figure 1B) by passive diffusion was 

calculated following the approach outlined in [16].  The diffusivity was treated by three 

scenarios: D(const) - D is constant as in an ideal solution; D(c) - D is a function of concentration 

c; D(c,h) - D is the function of concentration c and the proximity to solid wall h.  We used a 

representative D value for small molecules in water, where D was 1.0∙10-6 cm2/s as for infinite 

dilution.  In D(c) and D(c,h) cases, diffusivity linearly changed from 1.0∙10-6 cm2/s at zero 

concentration to 0.5∙10-6 cm2/s at 1 M; and scaling functions were used according to graphs in 

the inset of Figure 1B.     

A cumulative mass release was calculated until uniform (equal to zero within a numerical 

tolerance) concentration was reached, with no further mass release as shown in Figure 1B.  We 

found that all release profiles showed exponential-like profiles, but with different stretch: the 

stretch of the release curve was increasing a) in the order of diffusivity D(const)<D(c)<D(c,h), 

and b) with increasing nanochannel length or decreasing height.  By comparing mass release 

curves for 5 nm nanochannel with D(const) and D(c,h) in Figure 1B, it  can be seen that the 

inclusion of nanochannel interface effects can have a significant impact on release kinetics.  

Here, we note that classical analytical solution exists for equation (2) for D(const). Then, in the 

case of 1D diffusion, variable decomposition can be used to solve the balance equation  

        (3) 

The analytical solution leads to a mass release in a form of the saturated exponential [22], like: 

      (4) 
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where M∞  is the proportionality constant or the mass released at infinite time; M(t) is the 

cumulative released mass at time t and λ is the exponent describing the kinetics of the 

diffusion.  In general, there is no analytical solution in a closed form in the D(c) case, as well as 

in more complex case of D(c,h).  Both D(c) and D(c,h) are highly dependent on the nature of 

material properties [8], since different molecular interactions will lead to different D(c) and 

S(c,h).   

As all solutions rely on the balance equation (2) leading to a mass release form (4) for 

D(const), we used equation (4) to characterize all numerical solutions by fitting the value of λ.  

We have analyzed λ values in terms of the ratio L/H=α.  Since L and H have direct relations to 

the gradient and cross-sectional (flux) area of nanochannel, respectively, the results of our 

analysis may be further generalized to other nanofluidic geometries and volumes.   

 

Figure 2.  The dependence of λ on the length to height ratio α=L/H of nanochannel in a 

double logarithmic scale.  Solid curves represent fitted lines using eq. (5).  The calculated points 

λ(α) for D(c,h) are marked by red dots, while the data points of D(const) and D(c) lie on straight 

fitting lines and are omitted for visual purpose. The case D(c,h) separates λ(α) into a family of 
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curves, so that the same λ value can be obtained from different α as marked by black dashed 

line crossing D(c,h) curves.  A ten-fold decrease of λ (on D(c,h) curves) from D(c) line establishes 

α‡ values on D(c,h) curves, beyond which non-Fickian transport is observed (dashed lines).  The 

inset contains representative hyperbolic λ(α) curve in linear coordinates for D(const). 

We have introduced a function λ(α): 

       (5) 

with arbitrary coefficients A and B to characterize the calculated  mass release according to 

Equation (4). The λ values were evaluated for various combinations of L and H taking diffusivity 

as D(const), D(c) and D(c,h) and plotted against α in Figure 2.  We further analyze the relation 

λ(α) for computed mass release curves fitted by equation (4) for the three assumptions 

regarding the diffusivity.  In the cases of D(const) and D(c), the λ(α) function is represented by 

straight lines in the double logarithmic scale, Fig. 2,  using equation (5) with A=0.  Both cases 

correspond to a free diffusion regime with the mass release kinetics according to equation (4), 

which will be called as Fickian through the manuscript.  The diffusivity dependence on 

concentration does not change the mechanism of diffusion, it only leads to a reduced transport 

kinetics:  the line for D(c) is below the line D(const), λ is smaller (for the same α) and 

consequently the mass release is slower.  These straight lines, i.e. the linear functions λ(α) (in 

the double logarithmic scale representation),  also demonstrate that for a given geometric ratio 

α=L/H there is a unique value of λ and a unique transport kinetics of the nanochannel within 

the free diffusion regime. 
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However, the inclusion of interface effects with D(c,h) reveals qualitative and quantitative 

difference of λ(α) with respect to free diffusion.  The λ values from D(c,h) overlap with D(c) case 

at small α, but start to deviate from D(c) scenario forming a λ(α) family of curves corresponding 

to specific values of L (Figure 2).  By inspecting these λ(α) curves, it is taken that when the 

difference between the λ value at the curve D(c)  and on the λ(α) curve is ten-fold, the onset of 

non-Fickian occurs and the corresponding value α=α‡ is considered critical.  We have that each 

λ(α) curve obeys Equation (5) for α much below α‡,  then the difference with respect to the 

straight line starts to increase in the regime termed as semi-Fickian (see Figure 2).  Finally, for α 

above α‡ the difference is further increased and the diffusion regime becomes non-Fickian, 

where Equation (5) is no longer applicable.  Figure 3 depicts λ(α) using D(c,h) for three systems 

with different inlet and outlet reservoirs: 1 μL / 1 μL, 5 μL / 1 μL, and 5 μL / 5 μL.  The λ(α) 

curves show that reservoir volumes affect  diffusion kinetics.  However, no matter what volume 

we may choose, the critical value α‡ remains the same, therefore diffusion transport regime is 

only dictated by nanochannel properties: H, L and surface physic-chemistry, which is 

incorporated in our computational method with diffusivity scaling functions.   
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Figure 3.  Dependence λ(α) for three systems having nanochannel with L = 0.5 μm and 

different inlet and outlet reservoir volumes using D(c,h): 1 μL / 1 μL, 5 μL / 1 μL, and 5 μL / 5 μL.  

Critical value α‡ is the same for all reservoir volumes, hence α‡ depends on the nanochannel 

properties.  D(c) system having both reservoirs volumes of 1 μL is given for visual comparison.  

 

By the incorporation of interface effects to diffusivity, calculated mass release is 

characterized by the family of λ(α) curves, where each curve corresponds to a specific length L.  

Identical λ values may be found for different α, meaning that the same diffusive mass transport 

kinetics occurs in nanochannels with different geometries.  That is illustrated by black dashed 

line in Figure 2 that crosses different λ(α) curves.  Figure 4 shows two mass release curves that 

completely overlap (λ = 5∙10-4 for both curves), although this mass release is computed for 

nanochannels having two different α: L/H = 0.5µm/3.4nm and 1.0µm/5nm.  This finding 

represents a new phenomenon for the diffusion in nanochannels: the same diffusion mass 

transport kinetics (the same λ) can occur for different geometric parameters L and H due to 

surface interaction effects in case when α is larger than the critical value α‡, i.e. where diffusion 

is semi-Fickian.  Therefore, surface interactions play a role of an additional parameter for 

confined diffusion at nanoscale.  
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Figure 4.   Diffusion in a semi-Fickian regime.  Practically the same diffusion kinetics 

(λ = 5∙10-4 in Eq.4; dashed line in the inset) occurs through nanochannels having different α 

(L/H = 0.5µm/3.4nm and 1.0µm/5nm).  The inset shows characteristic portions of λ(α) profiles 

for L = 0.5 and 1 µm.  

 

From the analysis of Figures 2-4, it follows that Equation (1) will be violated by the 

breakdown of Fickian diffusion regime at small nanopores or nanochannels, when diffusing 

molecule size becomes comparable to a confining dimension (i.e. nanochannel height H).  With 

α values close to or larger than α‡ we reach the diffusion regime where the classical theory 

cannot handle the diffusion process.  For nanochannels with L equal to 0.5, 1, 3 and 10 µm the 

calculated α‡ are 261, 510, 1451 and 5153.  Using α‡ we can predict dimensions of 

nanochannels, where Fickian diffusion regime is breaking down.  With α‡ =L/H and known L, we 

found that the critical height for slit-like nanochannel is approximately 1.9 nm.  This value 

converges from all four investigated nanochannel lengths L, modeled with a use of the same 
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diffusion scaling function.  Since the glucose molecule is of size of 0.5 nm, we obtained that the 

critical height of nanochannel is approximately 3-4 molecular sizes.  In experimental studies of 

different molecules diffusion through different size of nanochannels [23, 24] it was found that 

the non-Fickian diffusion regime occurs when the ratio of the nanochannel height to the 

molecular size is in the range found by our calculations.  Other experiments with human serum 

albumin (HSA) and human growth hormone release (hGH) through polymer/gold nanopores 

support our model [25]: HSA showed Fickian release through 200 nm pore and zero-order 

release through 15 nm pore, while hGH diffusion was Fickian through 15 nm pore and zero-

order released through 6 nm pore.  HSA and hGH dimensions are approximately 8 and 4 nm 

leading to pore/size ratios 1:25 and 1:4 for free diffusion, and 1:2 and 1:1.5 ratios for zero-order 

release.  These findings also confirm that our model agrees well with experimental observations 

indicating that α‡ could discriminate well Fickian and non-Fickian regimes. 

Our model and analysis revealed that the inclusion of interface effects on diffusivity can have 

a deep impact on prediction of mass transport at nanoscale.  Besides more realistic description 

of diffusive mass transport, we have found deterministic parameters to establish diffusion 

regimes and to predict new nanofluidic transport effects.  By using the dependence λ(α), where 

α=L/H is the ratio of the channel length L and height H, we determined the conditions for the 

Fickian or non-Fickian diffusion regime to occur within nanochannels.  The α=α‡ serves as a 

critical parameter, which demarks diffusion mechanisms: α < α‡ follows the Fickian-like release 

kinetics, while for α ≈ α‡ and α > α‡ the kinetics is non-Fickian.  Our results suggest a new 

nanofluidic diffusion phenomenon: the same transport kinetics can be achieved by different 

nanochannel geometries.  This opens possibilities to rationalize kinetics of diffusive mass 
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transport through nanofluidic devices tailoring transport rates and regimes.  Our parametric 

study offers a new insight into the diffusive mass transport through nanoconfined structures 

and establishes relations among geometry, interface effects and mass transport kinetics.  

Although the presented approach relies on simplifications of the diffusion transport problem in 

nanoconfinement and additional studies might be required for more complex systems, the 

introduced novel parametric study of diffusion at nanoscale may have an impact on 

nanotechnology and design of biomedical devices. 
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Figure Captions 

 

Figure 1. Nanochannel model. A) The model consists of nanochannel with length L and height H 

connecting two reservoirs (Vin and Vout) with different concentrations at time t=0.  The left side 

of the nanochannel depicts representative diffusive flux field that depends on the proximity to 

surface h; the gray gradient on the right side depicts decreasing diffusivity by approaching 

surface, and this decrease is modeled by using S(c,h).  B) Calculated cumulative mass release 

M(t)/M∞ through 1 µm long nanochannel with three nanochannel heights using D(c,h).  

M(t)/M∞ of 5 nm nanochannel assuming D(const) (red dashed line) is presented for comparison 

with the case D(c,h).  The inset shows the scaling the function S(c,h) for 0 and 1 M solutions 

used in the calculations. 

 

Figure 2.  The dependence of λ on the length to height ratio α=L/H of nanochannel in a double 

logarithmic scale.  Solid curves represent fitted lines using eq. (5).  Points λ(α) for D(const) and 

D(c) lie on straight lines and are omitted for visual purpose. The case D(c,h) separates λ(α) into 

a family of curves, so that the same λ value can be obtained from different α as marked by 

black dashed line crossing D(c,h) curves.  A ten-fold decrease of λ (on D(c,h) curves) from D(c) 

line establishes α‡ values on D(c,h) curves, beyond which non-Fickian transport is observed 
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(dashed lines).  The inset contains representative hyperbolic λ(α) curve in linear coordinates for 

D(const). 

 

Figure 3.  Dependence λ(α) for three systems having nanochannel with L = 0.5 μm and different 

inlet and outlet reservoir volumes using D(c,h): 1 μL / 1 μL, 5 μL / 1 μL, and 5 μL / 5 μL.  Critical 

value α‡ is the same for all reservoir volumes, hence α‡ depends on the nanochannel 

properties.  D(c) system having both reservoirs volumes of 1 μL is given for visual comparison. 

 

Figure 4.   Diffusion in a semi-Fickian regime.  Practically the same diffusion kinetics (λ = 5∙10-4 in 

Eq.4; dashed line in the inset) occurs through nanochannels having different α (L/H = 

0.5µm/3.4nm and 1.0µm/5nm).  The inset shows characteristic portions of λ(α) profiles for L = 

0.5 and 1 µm.  
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Figure 1 A 
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Figure 1 B 
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