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Origin of magnetic stochasticity and transport in plasma microturbulence
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Nonlinear excitation of linearly stable microtearing modes – with zonal modes acting as a cat-
alyst – is shown to be responsible for the near-ubiquitous magnetic stochasticity and associated
electromagnetic electron heat transport in gyrokinetic simulations of plasma microturbulence.
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Introduction.– To date, many key aspects of turbulent
transport in magnetized fusion plasmas remain poorly
understood. This includes, in particular, the origin and
role of magnetic field fluctuations which are observed in
both experiments and simulations. These fluctuations
evolve self-consistently with other turbulent quantities
and allow heat to be transported radially via electrons
streaming along perturbed field lines. The relative im-
portance of this effect is expected to increase with the
normalized plasma pressure, β. Since high β is desirable
for many aspects of high-performance discharges (reac-
tion rates, e.g., scale like β2), unravelling the character-
istics of turbulent transport in this regime is an active
and important area of current research.

Over the last few years, gyrokinetic simulations have
provided some surprising results concerning electro-
magnetic effects in plasma microturbulence (see, e.g.,
Refs. [1–6]). Notably, in the case of ion temperature
gradient (ITG) turbulence, systematic β scans [4, 5]
have been performed, showing that the electromagnetic
electron heat transport increases roughly as β2 until it
becomes comparable to the electrostatic contributions.
Moreover, the resulting magnetic field fluctuations ex-
hibit fully developed stochasticity even at low values of
β.[7–9] Both of these empirical findings are puzzling and
cannot be understood on the basis of quasilinear theory.
The latter predicts a linear transport scaling with β, as
well as negligible stochasticity, given that ITG modes are
not well-structured to break magnetic field lines.

Via novel analysis techniques (developed for the study
of damped eigenmode excitation [10–12]) applied to
electromagnetic gyrokinetic simulations with the GENE
code [1], we provide an explanation for both observa-
tions which is clearly outside the standard theoretical
framework of plasma microturbulence. While tradition-
ally, turbulent transport in the plasma core has been
linked almost exclusively [13] to linearly unstable modes,
the scenario that emerges here is that linearly damped,
but nonlinearly driven microtearing modes become im-
portant or even dominant at high β. Moreover, it is
shown that the relevant excitation mechanism involves
a nonlinear coupling with zonal modes, defined here as
fluctuations at ky = 0. This definition encompasses both

the zonal flow and other fluctuations, such as the geodesic
acoustic mode [14] (ky is the Fourier wavenumber for the
mostly-poloidal binormal direction). Zonal modes are
well known to play a critical role in moderating turbu-
lent saturation levels. In contrast, here we introduce an-
other role of zonal modes as the catalyst of an additional
transport channel.
Simulation setup.–Much of the data used in the follow-

ing analysis is taken from the GENE dataset described in
Ref. [5]. The widely used Cyclone Base Case [15] param-
eters are employed, with the addition of finite electron
plasma beta β = 8πneTe0/B

2
0 (where ne and Te0 are the

background electron density and temperature, and B0 is
the magnitude of the background magnetic field), rang-
ing from the electrostatic limit to β = 0.012. The reader
is referred to Ref. [5] for a detailed description of the
physical and numerical parameters.
Occurrence of tearing structures.– In a first step, we

demonstrate the presence of tearing structures in the
turbulence, and show that they are responsible for the
observed magnetic stochasticity and transport. Tear-
ing structures are perturbations which have a resonant
component of the parallel magnetic vector potential, A||.
The resonant component can be extracted by integrat-
ing along the field line at a q-rational surface, where
q is the safety factor. A structure with tearing par-
ity – even symmetry for A|| along the field line – will
typically have a strong resonant component. In con-
trast, a structure with ballooning parity – odd parity
along the magnetic field, as is characteristic of the ITG
mode – will have no resonant component. In order to
identify tearing structures, we construct proper orthogo-
nal decompositions (POD) [16, 17] of A||. This yields

A||(z, t) =
∑

n A
(n)
|| (z)h(n)(t), where both the mode

structures, A
(n)
|| (z), and the time traces, h(n)(t), are or-

thogonal and arranged in order of decreasing amplitude.
More specifically, we seek to decompose A|| into com-

ponents with even and odd parity, corresponding, respec-
tively, to subdominant tearing modes and ITG modes,
as it will turn out. We do this by constructing a POD
of every linearly independent set of wavenumbers in the
full A||kx,ky

(z, t) dataset, where kx is the radial Fourier
wavenumber. A linearly independent set of wavenumbers
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FIG. 1: Typical A|| POD modes structures. The n = 1 mode
(left) has ballooning parity and the n = 2 mode (right) has
tearing parity.

consists of a single ky wavenumber, and all kx wavenum-
bers that define its extended mode structure, i.e., the
kx modes which are connected by the flux tube paral-
lel boundary condition [18] and are identical to the kx
modes that are resolved in a corresponding linear simula-
tion. It is observed that the n = 1 POD mode structure
matches very closely the mode structure of the unsta-
ble ITG mode at wavenumbers with strong linear drive.
This is an indication of the effectiveness of this analysis
in separating the role of the most unstable ITG modes
from that of subdominant modes. The first two A|| POD
modes almost invariably define a clear ballooning com-
ponent and a clear tearing component. An example is
shown in Fig. 1, where the n = 1 and n = 2 modes are
plotted for β = 0.003, and kyρs = 0.2, kxρs = 0 (where
ρs = (miTe0)

1/2/eB0 is the sound radius). As will be
shown, almost all of the stochasticity and transport can
be captured with only these two modes (i.e., the first two
POD modes for each wavenumber).
When the central kx value is non-zero, the modes may

peak away from the outboard midplane (z = 0) and also
exhibit some mixing of the parity. Even in these cases,
there typically remains one mode which is predominantly
tearing and one which is predominantly ballooning. In
order to automatically distinguish the ballooning compo-
nents from the tearing components, a parity factor is de-
fined, P = |

∫

dzA|||/
∫

dz|A|||. The parity factor is zero
for pure ballooning parity and may approach a value of
one for tearing parity modes. This can be used to de-
compose the entire A|| dataset according to

A||kx,ky
(z, t) = A

(ball)
|| +A

(tear)
|| +A

(res)
|| , (1)

where the ballooning component (ball) is defined as
whichever of the first two POD modes has the smaller
parity factor, the tearing component (tear) is whichever
of the first two POD modes has the larger parity fac-
tor, and the rest of the POD modes are grouped into the
residual category (res).
This analysis procedure can be summarized as follows:

(1) Select from the A|| fluctuation data a single kx and
ky, along with all kx modes connected by the parallel
boundary condition. (2) Construct a POD of this data

set. (3) Select from the first two POD modes the one
with the largest parity factor and group it in the tearing
component of the decomposition. (4) Select from the first
two POD modes the one with the smaller parity factor
and group it in the ballooning component of the decom-
position. (5) Repeat steps 1-4 for all sets of wavenumbers
in the dataset. The result is a decomposition [as defined
in Eq. (1)] of A||kx,ky

(z, t) which defines a dominant bal-
looning component and a dominant tearing component.

Stochasticity and transport due to tearing structures.–

With this tearing-ballooning decomposition in hand, we
can study the contribution of each component to the
magnetic field fluctuations and transport. In order to do
this, a routine is used to follow the trajectory of magnetic
field lines and track their deviation from the equilibrium
field. Poincaré plots verify that the tearing component
produces a fully stochastic field, i.e., the field lines are
no longer confined to flux surfaces, but rather fill the
simulation volume. This can be quantified with a mag-
netic diffusivity Dfl = lim

l→∞
〈[ri(l) − ri(0)]

2〉/l,[8] where

ri is the radial position of the ith field line, l is the dis-
tance traced along the field line, and an average is taken
over all traced field lines. Across the β scan, the tearing
component of A|| produces a magnetic diffusivity that is
comparable to that of the total A||, while the ballooning
and residual components produce comparatively negligi-
ble diffusivities.

In Refs. [8, 9], the magnetic diffusivity is shown to have
quite a direct relation to the electron electromagnetic
heat transport, QEM

e = 〈q̃e||B̃x〉/B0, where 〈〉 denotes
a spatial average, q̃e|| is the parallel heat flux moment,

and B̃x is the radial component of the fluctuating mag-
netic field. Using the tearing-ballooning decomposition,
we can directly calculate different contributions to QEM

e .
The QEM

e ky spectra are quite distinctive (see, e.g., Fig.
6b in Ref. [4]); they exhibit a dip in the flux at the same
scales where the electrostatic transport channel peaks.
This dip dominates at low β and becomes less prominent
as β increases. The present analysis shows that this fea-
ture is the result of the superposition of the transport
associated with the ITG modes and the stochastic trans-
port associated with the subdominant tearing modes, as
will be described below.

Using the decomposition defined in Eq. (1), one can de-
fine a ballooning component of the flux, 〈q̃e||B̃

ball
x 〉/B0,

a tearing component, 〈q̃e||B̃
tear
x 〉/B0, and the residual,

〈q̃e||B̃
res
x 〉/B0. The ky flux spectra (at β = 0.003) for the

different components are shown in Fig. 2. The ballooning
component of the flux defines a heat pinch that peaks in
the low ky region where the ITG modes dominate. In
contrast, the tearing component of the transport is out-
ward, also peaking at low ky, but additionally extending
with significant amplitude to the higher wavenumbers in
the spectrum. The total transport spectrum is a super-
position of these two contributions. In order to further
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FIG. 2: The total electromagnetic electron heat flux spectrum
(plus signs), summed over kx for β = 0.003, decomposed into
contributions from tearing modes (crosses), ballooning modes
(asterisks) and all remaining fluctuations (circles).
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FIG. 3: The free energy in the POD tearing mode (black)
at kxρs = 0, kyρs = 0.2, and β = 0.003 along with the to-
tal nonlinear drive (red) and the nonlinear drive defined by
coupling with zonal wavenumbers (blue), plotted over a time
segment of the nonlinear saturated state. The energetics of
the tearing mode is dominated by the nonlinear drive which
consists largely of the zonal coupling.

elucidate the components of the transport, we express
the parallel heat flux in terms of the parallel tempera-
ture gradient along a perturbed field line,[2]

q̃e|| = −n0eχe||

(

dT̃e||

dz
+

B̃x

B0

dT̃e||

dx
+

B̃x

B0

dTe0

dx

)

, (2)

where n0e is the electron density and χe|| is the paral-
lel electron heat conductivity. As it turns out, the ITG
modes mainly contribute via the first term which scales
like β,[5] while the third term is closely related to the
field line diffusivity, Dfl, and describes the heat trans-
port due to streaming along stochastic field lines. The
latter is produced by the tearing structures; it scales like
β2 and thus dominates as β increases.
Nonlinear excitation via zonal modes.– Having demon-

strated the role of tearing structures in the magnetic
stochasticity and transport, we turn now to identifying
an excitation mechanism. To this end, we first construct
a POD of the gyrocenter distribution function from a
GENE simulation and examine the energetics of the tear-

ing fluctuations. We examine in detail the wavenum-
ber kyρs = 0.2, kxρs = 0 for the β = 0.003 case. The
n = 4 mode in the POD exhibits clear tearing parity and
also defines the dominant outward contribution to the
electromagnetic heat flux. In order to examine the exci-
tation mechanism of this mode, we construct nonlinear
energy transfer functions.[19] The free energy is defined
as Ek =

∑

j

∫

dzdv||dµJ(z) (gjk + qjF0/Tj0χjk)
∗ gjk,

where v|| and µ are the two velocity coordinates, j de-
notes the particle species, gj is the gyrocenter distri-
bution function, qj is particle charge, F0 is the back-
ground Maxwellian distribution function, J(z) is a Ja-
cobian, χj = φ̄j + vTjv||Ā||j

, where the overbar denotes

a gyroaverage, and vTj is the particle thermal velocity.
The corresponding energy evolution equation is

∂tEk = L[gk, gk] +
∑

k′

x,k
′

y

N [gk, gk′ , gk−k′ ] + c.c. , (3)

where L includes the linear gyrokinetic operator, and the
nonlinear energy transfer function N is defined as

Nk,k′ =
∑

j

∫

dzdv||dµJ(z)
(

k′xky − kxk
′
y

)

[qjF0/Tj0χ
∗
jkχjk′gj(k−k′) − g∗jkχj(k−k′)gjk′ ] . (4)

The latter represents the energy transferred conserva-
tively between the wavenumbers (kx, ky) and (k′x, k

′
y)

as evidenced by the property, Nk,k′ = −Nk′,k. This,
however, defines the nonlinear energy transfer func-
tion for all fluctuations at a given wavenumber; a re-
finement is necessary to examine the energetics of the

tearing mode of interest: ∂tE
(tear)
k

= L[g
(tear)
k

, gk] +
∑

k′ N [g
(tear)
k

, gk′ , gk−k′], where g(tear) represents the
POD tearing mode described above, and the LHS repre-
sents the evolution of the tearing mode energy because of
the orthogonality of the POD modes. It is observed that
the nonlinear energy transfer for the tearing mode is dom-
inated by energy injected into the mode from wavenum-
bers at the same ky and |kx| > 0, and energy transfered
out of the mode into zonal wavenumbers (ky = 0). Note
that both of these energy transfer channels represent cou-
pling with zonal modes. A closer examination shows that
the energetics of the mode is dominated by the imbalance
between this energy transfer as demonstrated in Fig. 3
where the free energy of the tearing mode is plotted along
with the total nonlinear drive and the component of the
nonlinear drive defined by the subset of wavenumbers
representing zonal coupling: k′yρs = 0.2 and k′yρs = 0.
This subset captures the major trends in the energy bal-
ance. The linear term in the energy equation (not shown
in Fig. 3) occasionally plays a role but is, in general, much
smaller than the nonlinear term which dominates both
the drive and saturation of the tearing mode. We thus
have the unique situation where the saturation mecha-
nism for the driving ITG instability in turn produces a
significant additional transport channel.
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Tearing structures are microtearing modes.– One may
now ask if this POD tearing mode finds an analog in
the linear eigenmode spectrum. An examination of the
linear spectrum reveals several marginally stable tear-
ing parity modes which are essentially electrostatic in
nature. In order to find a mode which produces the
transport described above, we employ a direct eigenvalue
solver (incorporated into the GENE code, see Ref. [20])
that resolves all eigenmodes in the spectrum, but is
very numerically demanding. A reduced resolution test
case [(9, 16, 32, 8) grid points in (kx, z, v||, µ)] reveals one
eigenmode which has a tearing mode structure largely
matching the POD mode described above and also pro-
duces a significant value of QEM

e . A series of numerical
tests indicate that this mode is a legitimate microtearing
mode similar to those described in Ref. [21]: The mode
is sensitive to changes in the electron temperature gra-
dient but not the ion temperature gradient, it is funda-
mentally changed in the electrostatic limit but not when
the electrostatic potential is artificially deleted. For this
problem, linear convergence tests are, ironically, more de-
manding than nonlinear convergence tests. Careful non-
linear convergence tests were performed and reported in
Ref. [5]. These tests have been augmented by a high
kx resolution GENE simulation (kxmax

ρs = 11.9) which
shows no significant change in the transport quantities.
A simple transport model.– The scenario described

above implies that a significant component of the trans-
port is not directly attributable to the driving instabil-
ities. Such a situation is clearly not captured by quasi-
linear theory. Here we describe a first attempt to devise
a simple model that reproduces the observed β depen-
dence of QEM

e , using as inputs the ion electrostatic heat
flux and one free parameter that can be determined at a
single point in the scan.
The nonlinear nature of the tearing mode excitation

motivates the hypothesis that the level of electromagnetic
electron heat flux (due to the tearing modes) can be mod-
elled as a fixed fraction of the ion electrostatic heat trans-

port (due to the dominant instabilities) multiplied by the
appropriate factor of β2: QEM

e (β) = C0β
2QES

i . In Fig. 4,
this estimate is plotted across the β scan along with the
total value of QEM

e (C0 is calculated at β = 0.008).
This model can be improved by also accounting for
the contribution of the ITG modes themselves to QEM

e .

This is done with the quasilinear estimate Q
EM(ball)
e =

QES
i (QEM

e /QES
i )MU , where (QEM

e /QES
i )MU is the ra-

tio of fluxes for the most unstable linear eigenmode (ITG
mode at lower β and trapped electron mode at higher β)
at the peak of the spectrum (kyρs = 0.15). This estimate,
QEM

e = QES
i

{

C0β
2 + (QEM

e /QES
i )MU

}

, is also plotted
in Fig. 4. Its merit is reflected in the improved agree-
ment at lower β where the inward ballooning transport
is a non-negligible fraction of the whole.

Summary.– In this Letter, we have shown that mag-
netic stochasticity and transport in ITG turbulence is
caused by linearly stable microtearing modes that are ex-
cited by nonlinear coupling to zonal wavenumbers. These
insights are expected to improve the understanding and
control of magnetized high β plasmas.
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