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Numerical simulations of the geodynamo in presence of an heterogeneous heating are presented. We study
the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If
the symmetry breaking is sufficiently strong, them= 0 axial dipolar field is replaced by an hemispherical
magnetic field, dominated by an oscillatingm= 1 magnetic field. Moreover, for moderate symmetry breaking,
a bistability between the axial and the equatorial dipole isobserved. In this bistable regime, the axial magnetic
field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This
new scenario for magnetic field reversals is discussed within the framework of the Earth’s dynamo.
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It is now commonly believed that magnetic fields of the
planets, including the Earth, are generated by dynamo action
due to the fluid motion of liquid iron inside their cores [1].
In most of the planets, the magnetic field at the surface is
dominated by a dipolar magnetic field. In some cases, like
the Earth, the dipole field is almost aligned with the axis of
rotation. But recent observations have shown that for some
planets, like Uranus or Neptune, the dipole axis can be tilted
up to 45o due to a significant contribution from the equatorial
dipole [2].

In the case of the Earth, paleomagnetic measurements also
allow to reconstruct the dynamics of the magnetic field. The
Earth’s dipolar field has reversed its polarity several hundred
times during the past 160 millions years, and polarity reversals
are known to be strongly irregular and chaotic. Chaotic rever-
sals have also been reported in numerical simulations [3], and
in a laboratory experiment. In the VKS (Von Karman Sodium)
experiment, the dynamo magnetic field is created by a turbu-
lent von Karman swirling flow of liquid sodium due to two
counter-rotating bladed disks [4]. In this experiment, rever-
sals of the axial dipolar magnetic field have been reported, but
only if the two impellers rotate at different frequencies, when
the equatorial symmetry of the flow is broken [5]. These ex-
perimental observations are in a very good agreement with a
recent theoretical model, in which reversals arise from thein-
teraction between symmetric and antisymmetric components
of the magnetic field, linearly coupled by the action of an an-
tisymmetric velocity field [6], [7].

A growing number of studies seem to assess the effect of
an equatorially antisymmetric velocity mode on geomagnetic
field reversals. First, it has been observed that the ends of
superchrons (large periods of time without geomagnetic
reversals) are related to major flood basalt eruptions due
to large thermal plumes ascending through the mantle [8].
In agreement with this observation, it has been shown in
geodynamo numerical simulations that the dipole field rever-
sals and the loss of equatorial symmetry seem to be tightly
connected [9], and that taking an heterogeneous heat flux at
the core-mantle boundary of the Earth strongly influences
the frequency of magnetic field reversals [10]. Finally, a

study recently suggested that an equatorially asymmetrical
distribution of the continent is correlated with long term
increase of geomagnetic reversal frequency [11].

In this letter, we report 3D numerical simulations of an elec-
trically conducting, thermally convecting Boussinesq fluid.
The fluid is contained in a spherical shell that rotates about
thez−axis at the rotation rateΩ. The boundaries corresponds
to fixed temperature boundary conditions. On the inner sphere
of radiusr i , the temperature is homogeneously fixed toTi , but
an heterogeneous temperature patterng0

1 is used at the outer
boundary (of radiusro). The pattern corresponds to the sim-
plest large scale mode breaking the equatorial symmetry of
the flow:

To = Ti −∆T(1−Ccosθ) (1)

where To is the temperature at the outer boundary, andC
is a free parameter measuring the amplitude of the equa-
torial symmetry breaking. The dimensionless equations
system includes the Navier-Stokes equation coupled to the
induction equation and the heat equation, and the conditions
that both magnetic and velocity fields are divergence free.
The dimensionless parameters are the magnetic Prandtl
number Pm = ν/η, the Ekman numberEk = ν/(ΩD2),
the Prandtl numberPr = ν/κ and the Rayleigh number
Ra = αg0∆TD/(νΩ), where D = (ro − r i) is the typical
lenghtscale.ν, η, κ, α andg0 are respectively the kinematic
viscosity, the magnetic diffusivity, the thermal diffusivity,
the thermal expansion coefficient and the gravity at the outer
sphere. Time is expressed in viscous units. The radius
ratio is fixed to r i/ro = 0.3. The inner and outer spheres
are electrical insulators, and no-slip boundary conditions
are used on these boundaries. In all the results reported
here,Ra= 120, Pm= 20, Pr = 1 andEk= 6.e− 3, using
parameter values close to the ones used in similar previous
studies [10]. Although these parameters are far from those of
natural dynamos, they allow for long time integrations and
statistical analysis. The asymmetry parameterC is varied
between 0 and 0.25.

The top inset in Fig. 1 shows the solution obtained for
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C= 0.1, when the symmetry breaking is relatively weak. The
color indicates the radial magnetic fieldBr at the core-mantle
boundary. Magnetic field lines are also shown. For this value
of C, the magnetic field is strongly dominated by its axisym-
metric component and the radial magnetic field measured at
the core-mantle boundary shows a strong dipolar component.
A weaker non-axisymmetric component, reminiscent from
the m= 3 convection pattern, is also visible. This magnetic
structure is quite similar to the one obtained in the absenceof
symmetry breaking. Despite the heterogeneous temperature
gradient, the magnetic energy remains largely symmetrical
with respect to the equator, although slightly larger in the
northern hemisphere.

For larger symmetry breaking, this dipole is replaced by
a totally different solution, hereafter referred as solution E.
The bottom inset of Fig. 1 shows the magnetic structure ob-
tained forC = 0.2. The magnetic field is now dominated by
a non-axisymmetricm= 1 component. At the outer sphere,
the field corresponds to an equatorial dipole, rotating around
thez-axis and slightly stronger in the northern hemisphere. In
the bulk of the flow, the equatorial asymmetry of the field be-
comes more important, and this new solution therefore takes
the form of an hemispherical magnetic field (a similar behav-
ior was reported in [12]). Although the thermal convection is
made more vigorous in the southern hemisphere by the het-
erogeneous heating, it is interesting to note that the magnetic
energy is surprisingly localized in the northern hemisphere.

The generation of an equatorial dipole has been reported
in previous numerical studies. An equatorial dipole solution
was described for Rayleigh number very close to the onset
of convection [13], and a similar solution was found in [14]
for smaller shell thickness. In our case, the breaking of the
equatorial symmetry is directly responsible for the generation
of the equatorial dipole. For the range ofC studied here, the
total kinetic energy remains relatively symmetrical with re-
spect to the equatorial plane (forC = 0.1, the equatorially
antisymmetric flow energy is only 10% of the symmetrical
one). However, this weak symmetry breaking is sufficient to
strongly modify the axisymmetric velocity, by generating a
large counter-rotating zonal flow. This toroidalt0

2 flow intro-
duces a strong shear in the equatorial plane which tends to
favor the equatorial dipole at the expense of the axial one.

An interesting behavior occurs for intermediate values of
the symmetry breaking. When 0.1 < C < 0.2, a bistability
between the axial dipoleD and the non-axisymmetric solution
E is indeed obtained. Fig. 1 illustrates this bistable regimeby
showing the bifurcation of both modes as a function ofC. The
axial dipolar solutionD is shown in black, and the solutionE
dominated bym= 1 magnetic modes in red. For each of these
solutions, we show the coefficients of the axial dipoleg0

1,
the equatorial dipoleg1

1, and the axial quadrupoleg0
2, where

gm
l means the poloidal component of the spherical harmonic

of order l and degreem. The dashed vertical lines in Fig.
1 indicate the region for which the system is bistable: both

FIG. 1: Bifurcation of the coefficientsg0
1, g1

1 andg0
2 of the

magnetic energy as a function of the symmetry breaking
parameterC. At smallC, the solution corresponds to a strong

dipolar magnetic field (top inset). At largeC, the solution
takes the form of an equatorial dipole at the outer surface
(bottom inset). For 0.1<C< 0.2, there is a bistability

between the axial dipole solutionD (black curves) and the
equatorial dipole solutionE (red curves). Turbulent

fluctuations connect the two solutions.

solutions can be obtained depending on the initial conditions
of the simulation. Note that for the solutionE, dipolar and
quadrupolar components possess the same amplitude, in
agreement with the hemispherical structure of the magnetic
field.

More interestingly, when the magnetic field is in this
bistable regime, for 0.1 < C < 0.2, the strong fluctuations
generated by the turbulence of the flow allow the system
to switch from one solution to the other. These transitions
between the axial and the equatorial dipole are shown by
the time series of the energy of the system in Fig. 2-top:
the two states, although strongly fluctuating, are clearly
distinguishable by different well defined mean values for the
energies of axial (black) and equatorial (red) dipoles, and
the system randomly switch from one state to the other. In
addition, Fig. 2-bottom shows the time evolution of theg0

1
and theg1

1 at the core-mantle boundary. Since the phase space
is symmetrical with respect to the symmetryD → −D, we
observe transitions fromE to D as well as transitions from
E to −D. This bistability between the axial dipole and the
equatorial one therefore takes the form of chaotic reversals of
the polarity of the axial dipole. During a reversal, the dipolar
magnetic field does not vanish, but rather tilts at 90o and
rotates in the equatorial plane.

In Fig. 2, the dipolar magnetic field spends approxima-
tively as much time aligned with the axis of rotation (solution
D) as tilted at 90o (solutionE). In fact, the total time spent in
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FIG. 2: Time evolution of the magnetic field forC= 0.13.
The system chaotically jumps between the bistable solutions
E and±D. Top: magnetic energy of the equatorial (red) and

axial (black) dipoles. Bottom : same thing, but at the
core-mantle boundary. The bistability with the equatorial
dipole yields chaotic polarity reversals of the axial dipolar

magnetic field.

one state or the other strongly depends on the amplitude of
the symmetry breaking. Fig. 3 shows the probability density
function of the dipolar componentg0

1 for different values of
C. ForC ≤ 0.1 (black curve), the equatorial dipoleE is not
excited, and only the dipolar configurationD is accessible:
the field does not reverse, and the probability picks around
D or −D, depending on the initial conditions. WhenC is
slightly increased, the system starts to briefly explore the
equatorial dipolar state, in addition toD. The PDF is thus
characterized by a non-zero value atg0

1 = 0, corresponding
to the solutionE. By symmetry, this solution is identically
connected toD or−D, allowing the axial dipole to reverse the
sign of its polarity. For 0.1<C< 0.2, the probability density
function of the axial dipole is then trimodal. Finally, when
C is sufficiently large, only the equatorial dipole solutionE
remains, and the probability ofg0

1 is centered around zero.

During this transition from a non-reversing dipolar mag-
netic field to an oscillatingm= 1 mode, one can also study
the direction of the dipole (Fig. 4). The black curve shows
the probabilityPD of finding the system in the axial con-
figuration (more precisely,PD is defined as the probability
that sin(θD) < 0.25, whereθD is the dipole tilt angle). The
transition is very sharp, the axial dipole probability dropping
abruptly from one to zero forC > 0.1. On the contrary, the
probability of finding the equatorial dipole (sin(θD) > 0.75)
rapidly increases from zero to one whenC is increased. The
red curve shows the reversal frequency of the dipolar solution
D versus the symmetry breakingC. WhenC is increased, the
connection with the attractorE corresponding to the equato-
rial solution is larger. Consequently, the connections between
the two opposite statesD and−D are more frequent, and the
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FIG. 3: Probability density function of the axial dipolar
component at the core-mantle boundary, for different values
of C. Depending on the value ofC, the distribution can be

picked around a non-zero value ofg0
1 (smallC, solutionD) or

around zero (largeC, solutionE). In the bistable regime, the
distribution can be bimodal or trimodal.

number of reversals increases.
For C ∼ 0.1, at the very beginning of this transition, the

system spends a long time in the solutionD. It still explores
the equatorial configuration, but only for a very brief moment
during reversals or excursions. In this case, the distribution
tends to be bimodal (red curve, Fig. 3), despite the fact that
three stable states are involved in the reversal. For instance,
the inset of Fig. 4 shows the time evolution of the dipole tilt
for C = 0.12 and illustrates how a weak equatorial symmetry
breaking can produce ’Earth-like’ reversals, with a bimodal
distribution and a dipole tilt rapidly switching from 0o to 180o.

It is possible to give a naive picture of this mechanism
using the analogy with a heavily damped particle in a tristable
potential (a different but close mechanism is described in [15]
by picturing the geodynamo as a bistable oscillator): most
of the time, the system is trapped inside one of the wells
(corresponding toD or −D). Due to turbulent fluctuations,
the system eventually escapes one of these stable minima to
reaches the opposite one. Between these two opposite states,
there is a third stable potential well, the equatorial dipole
E, which creates a connection betweenD and−D. As C
is increased, an exchange of stability takes place from the
potential wells±D toward E, and reversals become more
frequent (forC > 0.2, when onlyE persists, the axial dipole
simply fluctuates around zero). Simply stated, reversals ofthe
axial dipolar field thus rely on the presence of the equatorial
dipole, which is used as a transitional field during each
reversal.

Interestingly, this scenario shares strong similarities with
the mechanism for reversals observed in classical geodynamo
simulations: when an homogeneous heat flux is used, rever-
sals of the dipole field are only observed within a particular
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FIG. 4: Black: probability for finding the axial dipolar
solution, as a function ofC. The transition from an axial to

an equatorial dipole field is very sharp. Red: Reversal
frequency of the axial dipole. AsC increases, the basin of

attraction of the equatorial dipole extends, allowing for more
and more reversals of the axial dipole. Inset: Time evolution
of the dipole tiltθD for C= 0.12: the system spends a very

weak portion of time in the non-axisymmetric state, and
’Earth-like’ reversals can be obtained.

transition region of the parameter space, between a regime
in which the field is strongly dipolar and a regime strongly
fluctuating characterized by a multipolar magnetic structure
[16], [17]. In this case, reversals also result from a bistability
between the dipole and another mode (the multipolar mode),
similarly to what happens here with the equatorial dipole. As
in our case, ’Earth-like’ reversals are obtained only if thesys-
tem is chosen inside the transition region, but only at the very
beginning of this transition, close to the boundary with the
dipolar regime.

Although based on a different mechanism, the behavior
of the magnetic field also has interesting similarities with
the model proposed in [6]: reversals are triggered by the
equatorial symmetry breaking, and result from the interaction
between the so-called dipole and quadrupole families of
the magnetic field. The intriguing generation of a strongly
hemispherical solution at very small symmetry breaking is
also predicted by this model [18]. In fact, depending on the
parameters, this model can lead to an hemispherical solution
like the one reported here, or yields polarity reversals through
a saddle-node bifurcation. However, numerical simulations
have shown that this later mechanism is rather selected at
sufficiently smallPm [19], whereas the simulations reported
here are carried atPm= 20. Although smallPmsimulations
are numerically challenging, it would be interesting to study
how the mechanism described in this letter is modified asPm
is decreased towards more realistic values.

To summarize, we have shown that an equatorial dipole
solution can be generated in geodynamo simulations when
the equatorial symmetry of the flow is broken by an het-
erogeneous heating at the core-mantle boundary. Moreover,
for weak symmetry breaking, a bistable regime between this
equatorial dipole and the axial dipole is obtained. Finally, this
bistability leads to an interesting scenario for geomagnetic re-
versals: The symmetry breaking, by stabilizing the equatorial
dipole, provides the system with a new solution for connecting
the two axial dipole polarities, and sufficiently strong turbu-
lent fluctuations trigger chaotic reversals of the field. During
a reversal, the transitional field is strongly hemispherical in
the bulk of the flow, and corresponds to an equatorial dipole
field at the core-mantle boundary, rotating around thez-axis.
In agreement with paleomagnetic observations, the reversal
frequency is directly related to the equatorial asymmetry of
the flow.
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