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A quantum electron star

Andrea Allais, John McGreevy and S. Josephine Suh
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

We construct and probe a holographic description of state of matter which results from coupling
a Fermi liquid to a relativistic conformal field theory (CFT). The bulk solution is described by a
quantum gas of fermions supported from collapse into the gravitational well of AdS by their own
electrostatic repulsion. A physical interpretation of our result is that, in the probe limit studied
here, the Landau quasiparticles survive this coupling to a CFT.

INTRODUCTION

Holographic duality can be used to study metal-
lic states of matter which are not described by Lan-
dau’s Fermi liquid theory [1–14] (for a summary, see
e.g. [5, 15, 16]). In particular, the work of [2, 4] con-
structs controlled non-Fermi liquid fixed points. In their
setup, however, the fermions are only a parametrically
small fraction (∼ 1/N2) of all degrees of freedom. The
large bath of additional degrees of freedom is responsible
for the destruction of the Landau quasiparticle, and for
the short transport lifetime and linear-T resistivity ob-
tained in the special case of the marginal Fermi liquid,
as described in [5, 6].

This large bath is locally critical, i.e. has dynamical
critical exponent z = ∞, and has non-zero entropy at
zero temperature, which indicates fine tuning and an in-
stability towards a lower energy state. Various instabil-
ities have been suggested; an intrinsic one, arising from
the density of fermions itself, was pointed out in [8]: the
fermions screen the gauge flux which supports the AdS2

throat, leading to a Lifshitz geometry with large but fi-
nite dynamical exponent z ∼ N2, which is a better ap-
proximation to the ground state. Such ‘electron star’
states, comprising a gravitating gas of charged fermions
in the bulk, have been further studied in detail [9–14].
These states represent an improvement over the work of
[2, 4] in that the fermions contribute at leading order in
N2 to the construction of the geometry.

However, in these states, the single-fermion response
exhibits many Fermi surfaces [12, 14], and the conformal
dimension of the boundary fermionic operator is much
larger than one. Such unphysical features are not in-
trinsic to holographic states supported by fermions, but
rather they are a consequence of the approximations used
in constructing the states, in particular the Thomas-
Fermi approximation. We would like to construct a holo-
graphic non-Fermi liquid with more realistic features, and
this requires going beyond this approximation.

A point of departure is provided by [17]1, where the

1 Earlier work which studies quantum spinor fields in a holographic
context includes [18, 19]. Recent provocative work towards this
goal includes [20–23].

Thomas Fermi approximation is replaced by the Hartree-
Fock approximation. The state constructed there can be
understood as a Fermi liquid coupled to a rough rep-
resentation of confining gauge theory. In the bulk, the
confinement gap is introduced as an artificial ‘hard wall’
termination of the geometry at a fixed value of the RG
coordinate, and appears essential for the construction of
the fermionic ground state.

This paper makes a further step towards the above goal
of a realistic holographic non-Fermi liquid by construct-
ing a bulk Fermi liquid state without artificial cutoffs in
the geometry. More precisely, we show that, with due
improvements of the definition and construction of the
fermionic ground state, the bulk state conceived in [17]
survives the limit where the hard-wall cutoff is removed.
The problem we solve can also be viewed as the fermion
analog of the probe holographic superconductor calcu-
lation in [24]. We name the resulting state a quantum
electron star, following [12], in the sense that we are de-
scribing a degenerate quantum gas of charged fermions
hovering above the Poincaré horizon.

Technically, we had to introduce some improvements
over previous methods. In particular, in order to properly
define the fermionic ground state, we had to introduce a
short-distance (UV) completion of the bulk system. We
accomplished this by putting the bulk system on a lattice.

Next, we describe the problem, and outline our method
of solution. Results and discussion follow.

SETUP OF THE PROBLEM

We consider a system defined by the action

S =

∫
dd+1x

√
−g
[
R− 2Λ

16πGN
− 1

4q2
F 2

]
+W [A] , (1)

where

eiW [A] =

∫
Dψ eiSf [ψ,A] , (2)

Sf [ψ,A] =

∫
dd+1x

√
−g

[
−iψ̄

(
ΓMDM +m

)
ψ
]
, (3)

ψ̄ ≡ ψ†Γt and DM ≡ ∂M + 1
4ωabMΓab + iAM , with ωabM

the spin connection.
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We study this system in a probe limit, GN → 0 at
fixed Λ, where the geometry is not dynamical. In the
dual language, we are studying a CFT where the fraction
of degrees of freedom that carry charge is small.

In particular, we specialize to the AdS4 metric

ds2 =
1

z2

(
−dt2 + dx2 + dy2 + dz2

)
, (4)

and we consider a gauge field of the form A = Φ(z)dt.
The equation of motion for the potential Φ is

− Φ′′(z) = q2z−3
〈
ψ̂†ψ̂

〉
. (5)

To compute the expectation value on the right hand
side, we expand the spinor field operator ψ̂ in eigenfunc-
tions of the Dirac Hamiltonian. The Dirac equation is
( /D+m)ψ = 0, and we make the following ansatz for the
eigenfunction ψ:

ψ = z3/2e−iωt+i
~k·~xΨ(z) . (6)

For any fixed ~k, the Dirac equation can be block-
diagonalized [4]. Without loss of generality we set ~k =
kx̂, and we let Ψ = (Ψ+,Ψ−)

t
. Using the following basis

for the Clifford algebra:

Γz = σ3 ⊗ 1, Γt = iσ1 ⊗ 1, Γx = σ2 ⊗ σ3, Γy = σ2 ⊗ σ1,
(7)

we have[
iσ2∂z − σ1m

z
± kσ3 + Φ(z)

]
Ψ± = ωΨ± . (8)

Eq. (8) has two linearly independent solutions, whose
asymptotic behavior near the AdS boundary is

Ψ±
z→0∼ az−mL

(
0
1

)
+ bzmL

(
1
0

)
(9)

plus terms subleading in z. We demand that the non-
normalizable solution be zero2: a = 0. Moreover, as in
[17], we impose hard-wall boundary conditions at an IR
cutoff z = zm: the upper component of both Ψ±(zm)
must vanish.

With these boundary conditions, the Dirac Hamilto-
nian is a self-adjoint differential operator with spectrum
ωn,~k,s, labelled by a discrete index n, by the momentum

~k and by the sign s = ± that distinguishes the upper
components from the lower components. We denote the
eigenfunctions with Ψn,~k,s.

In order to give definite meaning to the expectation
value in (5), for a given profile of Φ, we fill all the states

2 Allowing the mass to range over (− 1
2
,∞), this includes the al-

ternative quantization.

with ωn,k,s < 0, and we subtract the same expectation
value for Φ = 0. That is, we solve

− Φ′′(z) = q2 [n(z)|Φ − n(z)|Φ=0] ≡ q2∆n(z) , (10)

with

n(z) =
∑
~k,n,s

θ(−ω~k,n,s)Ψ
†
n,~k,s

(z)Ψn,~k,s(z) . (11)

Clearly (11) involves two sums that need to be regu-
lated. We regulate the sum over n by discretizing the
z coordinate, with lattice spacing ∆z, and we impose a
hard cutoff ~k2 < Λ2

k on the sum over momenta. After
the subtraction in (10), and appropriate renormalization
of the charge q, the problem has a well-defined limit as
∆z → 0, Λk → ∞. Additional information on the sub-
traction and renormalization can be found in the supple-
mentary material.

Eq (10) also needs to be complemented with appro-
priate boundary conditions on Φ. We want a finite
chemical potential in the boundary theory, so we set
Φ(0) = −µ, and we also impose Φ′(zm) = 0. We expect
that the boundary condition at zm becomes unimpor-
tant as zm →∞, and we verified this by exploring mixed
boundary conditions as well, without finding a significant
influence in the interior, for large enough zm.

We solve the integro-differential system formed by (8)
and (10) by an iterative method, whereby the number
density computed with a given a profile of Φ is used to
update Φ through (10) and the new profile is used to
update the number density, until convergence.

THE RESULTING GROUNDSTATE

Fig. 1 and 2 display typical profiles for Φ(z) and n(z).
They also show that the problem possesses a well-defined
limit as zm → ∞, Λk → ∞. We also verified that the
profiles are insensitive to the discretization of the z coor-
dinate, for small enough lattice spacing. Once the cutoffs
are removed, the only remaining scale in the problem is
the chemical potential µ, and, without loss of generality,
we can set µ = 1.

The profile of the potential approaches a constant as
z → ∞3, and we would like to argue that this constant
is zero.

The asymptotic behavior of the wavefunction for large
z depends on the sign of

p2 ≡ (ω − Φ(∞))2 − k2 . (12)

3 If the electric field ∝ Φ′ does not vanish at the Poincaré horizon,
an argument similar to §7.4 of [8] indicates that there will be
a value of z beyond which backreaction cannot be ignored, no
matter how small the Newton’s constant.
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FIG. 1. This plot demonstrates the existence of the
limit zm → ∞ with, from red (light) to blue (dark), zm =
10, 20, 30, 40, 50. The associated values of the boundary
charge density are ρ = 0.1710, 0.1669, 0.1638, 0.1627, 0.1622.
m = 0.3; q = 2.0; dz = 0.1; Λk = 20.
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FIG. 2. This plot displays how the limit Λk → ∞ is
approached, with, from red (light) to blue (dark), Λk =
2, 3, 5, 10, 20. See the appendix for further discussion of the
surface charge density. Corresponding values of the boundary
charge density are ρ = 0.1721, 0.1717, 0.1714, 0.1710, 0.1708
(note that here zm = 20, so these numbers should be com-
pared with the first value in fig. 1). Positive k represent the
spectrum of the m = 0.3; q = 2.0; zm = 20; dz = 0.04.

For p2 < 0 the wavefunction is exponentially decaying,
whereas for p2 > 0, Ψ(z) ∼ eipz. Let us call the region
p2 > 0 the infrared (IR) lightcone. As we increase zm, the
gap between the bands inside IR light cone decreases like
1/zm. Hence, for zm → ∞, a continuum develops inside
the IR light cone (fig. 3). The contribution to the number
density coming from each state within the IR light cone
also decreases like 1/zm, and is constant in z, for large
z. Therefore, any finite portion of the lightcone that lies
below ω = 0 gives a finite, z-independent contribution to
the number density.
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FIG. 3. The portion of the spectrum of the Dirac operator
nearest to the chemical potential. For k > 0 we display ωn,k,+,
for k < 0 we display ωn,k,−. Also shown are the IR lighcone
(dashed lines) and the UV lightcone (dash-dotted lines). It
is clear from the figure that a continuum is developing inside
the IR lightcone. m = 0.3; q = 2.0; zm = 200; dz = 0.2;
Λk = 20.

If Φ(∞) < 0, after the subtraction of (10), the lower
half of the light cone does not contribute any net num-
ber density, but the portion of the upper half of the light
cone that lies below ω = 0 gives, at large z, a finite,
z-independent contribution to the number density. This
is incompatible with the potential going to a constant
as z → ∞, due to Gauss law. A similar argument ob-
tains for the case Φ(∞) > 0. The only possibility is
for the potential to go to zero, so that the states within
the IR light cone do not contribute at all to the num-
ber density. Then, the only contribution comes from the
few bands that lie outside the IR light cone. The corre-
sponding wavefunctions are exponentially decaying, they
don’t contribute to the number density at large z, and
hence they are compatible with the potential approach-
ing a constant (zero) as z →∞.

Determining numerically the exact nature of the falloff
of the number density at large z is very difficult, but it is
quite manifestly subexponential. A possible explanation
for this is that the bands that lie outside of the IR light
cone, for a certain range of k, skirt the edge of the cone
(follow the dashed line), as can be seen in fig. 3. When
the state is close to the edge of the cone, the rate of
decay is very weak. Since the distance from the edge is
a decreasing function of zm, it is conceivable to obtain a
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subexponential decay of the number density as zm →∞.

From the holographic point of view, the IR region of
the geometry is dual to a relativistic CFT, which only
has spectral weight inside the lightcone |ω| < ck. One
interesting quantity that can be extracted from our com-
putation is the boundary charge density ρ. This is the
response to the chemical potential, and it is given by

ρ = Φ′(0) = q2

∫
dz ∆n(z) , (13)

where the second equality is a consequence of Gauss law.
The charge density in the boundary is equal to the total
charge in the bulk. Since µ is the only scale in the prob-
lem, its dependence on µ is determined by dimensional
analysis to be ρ = Aµ2, for some constant A(q,m).

Let us also point out that (13) guarantees Luttinger’s
theorem in the boundary [17]. Luttinger’s theorem states
that, for interacting fermions, the area of the Fermi sur-
face is proportional to the number density, with the same
factor as for free fermions. As will be discussed in more
detail in the next section, there is a Fermi surface wher-
ever one of the bands in fig. 3 crosses ω = 0. According
to our construction of ∆n(z), each k mode within the
Fermi surface contributes 1 to integral on the RHS of
(13), thereby ensuring Luttinger’s theorem.

GREEN’S FUNCTIONS

We compute the photoemission response of our
state, proportional to the single-fermion spectral den-
sity ImGR(ω, k), where GR is the retarded single-fermion
Green’s function. To compute the retarded function, we
impose in-falling boundary condition for the Dirac field
at the Poincaré horizon, and include a source at the UV
boundary in (9), a 6= 0. Then GR(ω, k) = b/a. See fig. 4.

The lifetimes of quasiparticles in holographic Fermi
surfaces can be understood in terms of interactions with
other gapless degrees of freedom [4, 6, 7, 25]. The de-
grees of freedom into which a Fermi surface quasiparticle
might decay are those inside the IR lightcone described
above.

Outside of the IR light cone, for ω = ωn,k, there ex-
ists a solution to the Dirac equation that is real, decays
exponentially at large z and is normalizable in the UV.
This means that the infalling boundary condition is triv-
ially satisfied, because the wavefunction is zero at the
horizon, and we have a finite response b 6= 0 for zero a.
As a consequence, GR(ω, k) has a pole at ω = ωn,k, and
hence there is a delta function singularity in ImGR. This
delta function implies the existence of an exactly stable
quasiparticle in the boundary theory. In particular, the
points where ωn,k = 0 are Fermi surfaces with stable ex-
citations. To detect such infinitely-narrow resonances in
the numerics, we add a small imaginary part to the fre-

FIG. 4. Density plot of the spectral density ImGR(ω, k),
displaying the spectra of the stable quasiparticles, which co-
incide with the bands in fig. 3, and the continuum inside the
IR light cone. Notice the increased width of the quasiparti-
cle peaks as they enter the light cone. m = 0.3; q = 2.0;
zm = 200; dz = 0.2; Λk = 20.

quency, so as to move the pole away from the Re(ω) axis,
and convert the delta function to a narrow Lorentzian.

On the other hand, inside the IR lightcone, the asymp-
totic behavior of the wavefunction is Ψ ∼ e±ipz, and
hence, in general, a finite and complex GR(ω, k) is needed
to satisfy infalling boundary conditions. Consequently,
quasiparticle excitations have finite width, because they
can decay into the gapless CFT excitations. This phe-
nomenon is visible in fig. 4 where the bound state bands
enter the IR lightcone.

DISCUSSION

The state we have constructed can be described semi-
holographically [4, 7] as arising from a Fermi liquid cou-
pled to a relativistic CFT. The study of Fermi surfaces
coupled to critical systems has a long history, e.g. [26–
33]. The conclusion of our holographic calculation is that
the coupling between these sectors described here is an
irrelevant deformation of the Landau theory. In fact, ac-
cording to our discussion about the stability of the quasi-
particles, and the location of the IR light cone, the only
possible singularities at ω = 0, k 6= 0 are delta func-
tion peaks, which indicate exactly stable quasiparticles.
This fact is very likely a consequence of the probe limit
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GN → 0.
The nature of the coupling between the FS and the

CFT that one infers for the semi-holographic picture
is a hybridization between a fermionic operator of the
CFT and the electron operator, as in [4, 7]. Possibly-
relevant couplings between the fermion density and rele-
vant bosonic operators of the CFT of the kind considered
in [34] are suppressed in our large-N limit.

It will be very interesting to study the effect of the
screening by the fermions on the boundary gauge the-
ory dynamics. On general grounds we expect that, even
beginning with a confining solution at µ = 0, when the
fermion density becomes large enough, the gauge the-
ory will deconfine. Holographically, this requires taking
into account the gravitational backreaction of the bulk
fermions. Progress in this direction will be reported else-
where. Resolving the problem confronted in this paper
– the question of the state of the bulk fermions in the
presence of a horizon – was an essential prior step.
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