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Data from four Fermi-detected gamma-ray bursts (GRBs) is used to set limits on spectral dis-
persion of electromagnetic radiation across the universe. The analysis focuses on photons recorded
above 1 GeV for Fermi detected GRB 080916C, GRB 090510A, GRB 090902B, and GRB 090926A
because these high-energy photons yield the tightest bounds on light dispersion. It is shown that
significant photon bunches in GRB 090510A, possibly classic GRB pulses, are remarkably brief, an
order of magnitude shorter in duration than any previously claimed temporal feature in this energy
range. Although conceivably a > 3σ fluctuation, when taken at face value, these pulses lead to an
order of magnitude tightening of prior limits on photon dispersion. Bound of ∆c/c < 6.94 x 10−21

is thus obtained. Given generic dispersion relations where the time delay is proportional to the
photon energy to the first or second power, the most stringent limits on the dispersion strengths
were k1 < 1.61 x 10−5 sec Gpc−1 GeV−1 and k2 < 3.57 x 10−7 sec Gpc−1 GeV−2 respectively. Such
limits constrain dispersive effects created, for example, by the spacetime foam of quantum gravity.
In the context of quantum gravity, our bounds set M1c

2 greater than 525 times the Planck mass,
suggesting that spacetime is smooth at energies near and slightly above the Planck mass.

PACS numbers: 98.70.Rz, 11.30.Cp, 98.80.Qc, 14.70.Bh

Gamma-ray bursts (GRBs) are the furthest known ex-
plosions in the universe. Their rapid variability and great
distances make them useful as probes of light proper-
ties as well as the intervening space. Were light to have
fundamentally different speeds at different wavelengths
(spectral dispersion), distant GRBs might show persis-
tent energy-dependent arrival patterns [1]. Spacetime
foam inherent in some formulations of quantum gravity,
for example, might cause spectral dispersion [2–4]. Other
properties of light or the universe might also cause differ-
ent wavelengths to propagate at different speeds [5, 6].
GRBs have already been used to limit the cosmologi-

cal density of compact objects through the non-detection
of their gravitational lensing [7]. Lag-minimizing al-
gorithms have been previously designed to search for
quantum-gravity based dispersion effects [8]. Although
bounds on quantum gravity dispersion in Fermi GRBs
have been explored previously for two different Fermi
GRBs [9, 10], the present work limits more general pa-
rameters, considers four Fermi GRBs, considers only
super-GeV photons, and yields substantially tighter
bounds.
Given that two photons of different energies ∆E are

emitted at the same place and time, the gap ∆t between
their arrivals can be quantified as

∆t = knDnE
n−1∆E, (1)

where kn is the dispersion strength and Dn is a cosmo-
logical lookback distance that also depends on the nature
of the photon dispersion [11]. Specifically,

Dn =
c

Ho

∫ z

0

(1 + z′)n dz′
√

ΩM (1 + z′)3 +ΩΛ

, (2)

where Ho is present value of Hubble’s constant, and ΩM

and ΩΛ are the present values of the matter density and

cosmological constant density [11, 12] in a geometrically
flat universe [13].

For clarity and following theoretical precedents [11, 14,
15], only three cases will be considered here: n = −1,
n = 1 and n = 2. The first case, n = −1, is for a
universe with no chromatic dispersion. Then, k−1 = 0
and D−1 corresponds with the classic cosmological look-
back distance [12]. In the second case, n = 1, the dis-
persion delay scales with the energy difference between
photons, a primary case expected were spacetime to have
the foaminess inherent in some models of quantum grav-
ity [15]. The third case has n = 2, is considered in some
models of quantum gravity [15]. It will be assumed here
that dispersion occurs uniformly along the light paths.

For a group of photons emitted over a source of finite
size, an upper limit on ∆t might relate primarily to an
upper limit on source size and not to dispersion proper-
ties of light. Given limited information, one might not
be able to disentangle the various contributions to ∆t.
Surely, though, an observed bound on ∆t would constrain
the combined processes, thereby limiting the individual
magnitudes. An exception to this would be if the source
and universe dispersion effects were of similar magnitudes
but of opposite sign, a coincidence that is testable with
a larger data set but here considered unlikely.

Because the largest energy ranges occur most com-
monly in the GRBs with the highest energy photons,
and since these GRBs with many high energy photons
are rare, GRBs with numerous high energy photons were
initially sought – to find the finest temporal feature of
statistical significance. A useful previous search included
one by Rubtsov et al. [16] of the Fermi LAT photon
database, although other previous studies also were in-
fluential [9, 17, 18]. Another clue came from a visual
inspection of Figure 1 of Abdo et al. (2009) [10], where a
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FIG. 1: Time series of photon arrivals for the four Fermi
GRBs analyzed. Top panel is a closeup of the one second of
GRB 0901510A, containing the finest temporal features.

striking clustering of photons above 1 GeV was spotted
for GRB 090510A. Other reasons for our 1 GeV thresh-
old include the lower photon background at higher ener-
gies, and the possibility of extremely brief GRB pulses
at higher energies. Four candidate GRBs eventually
emerged: GRB 080916C, GRB 090510A, GRB 090902B,
and GRB 090926A. “Pass 7” data from these GRBs were
downloaded from the Fermi web interface at NASA’s
GSFC in February 2012. Only photons within a 95 %
energy-dependent error radius of the sky position of the
optical counterpart were considered. This error radius
was interpolated from Fermi performance data given by
Ref. [19].

The bottom four panels of Fig. (1) show time series
for the arrivals of photons of the four Fermi GRBs. The
origin t = 0 indicates the time that the GRB triggered
on Fermi’s GLAST Burst Monitor (GBM). On the left,
at negative times, is 100 seconds of Fermi LAT data that
occurred before the trigger time while on the right, at
positive times, is 100 seconds of data that occurred after
the trigger time. Individual counts are shown as vertical
line segments. The height of the line segment indicates
the recorded energy of the photon detected. Inspection
of Figure 1 shows that the background for stray photons,
prior to the trigger time, for example, is very low. The
top panel of Fig. (1) shows a closeup of the one second
of GRB 0901510A when the bunched photons arrived.

For a (short) GRB 090510A, consider the first 11 pho-
tons arriving over a ∆T = 0.1745 seconds. The post-
trigger arrival times of these photons were 3.702234,
3.702783, 3.706941, 3.719431, 3.763108, 3.764177,
3.799190, 3.799318, 3.800096, 3.816729, 3.875767 sec,
respectively. For comparison, the next five photons,
photons 12 through 16, arrived at 3.925311, 3.953093,
4.037660, 4.140611, and 4.152783 sec. The sixth photon
had the unusually high energy of 30.9 GeV. Of the 11
photons considered, 6 photons arrived before the tempo-

ral midpoint and 5 photons arrived later. Notable is the
closeness in arrival times of three photon groups. These
groups are defined by the first and second photons, the
fifth and sixth photons, and photons seven through nine.
The time between the first and last photons in these
groups are 0.549 ms, 1.069 ms, and 0.906 ms respectively.

Is this arrival pattern of remarkably brief doublets sep-
arated by long pauses significant? Do these 3 brief pulses
define the finest time scale yet? We argue that such
“rhythm” is, most likely, not spurious. As shown be-
low, this group of 11 photons is consistent with a con-
stant overall arrival rate. Yet, the following simple, al-
beit crude, analytical argument shows that the odds of
a uniformly emitting source producing the pattern de-
scribed above, are below 3 σ. This is then confirmed by
a detailed Monte Carlo simulation.
For a perfectly random (Poisson) process, the wait-

ing times (t) between consecutive photon arrivals are ex-
ponentially distributed and a sum of m such times is
Γ-distributed with exponent m (convolution of m expo-
nential variates). Given an estimated mean waiting time
τ = 0.1745/10 sec, the probability of waiting t << τ is
t/τ . For example, consider t < 1.069 ms a “success”. The
probability of success is then ≈ 0.1069/1.750 = 0.0613
for the 11 photon group. Then the (binomial) proba-
bility of at least 4 “successes” in 10 trials (10 waiting
times between the 11 photons) is P (4, 11) = 1/455. If
one counts the triplet as 3 successes, the odds drop to
P (5, 11) = 1/5000. These crude estimates bracket the
result of the 109 uniformly random Monte Carlo runs,
indicating that the chance that 5 photons would trail
other photons by 1.069 ms or less occurs in only about
1 in 1190 trials (about 3.34 σ). A sceptic might object
that the mean rate need not be uniform, that both the
1st and the 11th arrivals ought to be regarded as fixed,
etc. To that end, we now describe our data analysis as
well as more elaborate Monte Carlo simulations in more
detail.

To determine the briefest yet statistically meaningful
time interval ∆t in the data, we proceeded as follows.
Groups of consecutive photon arrival times were consid-
ered, starting from the three photons arriving closest in
time, then the four closest photons, and subsequently all
numbers of GRB-associated photons for 500 seconds fol-
lowing the trigger. To ensure relatively uniform average
arrival rates, we chose photon groups with roughly equal
numbers of photon arrivals before and after the temporal
midpoint of the group. Formally, a two-bin χ2 statistic
was computed. Given the single degree of freedom, “flat”
groups with χ2 < 1 were considered as statistically con-
sistent with a flat distribution, and then search for ∆t
proper ensued, aided by a Monte Carlo simulation as fol-
lows.

For each photon in the time series except the last, the
number of trailing photons, arriving within a time win-
dow T was counted, for a wide range of T s. This photon
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TABLE I: Measured parameters of selected high energy Fermi GRBs.

GRB ∆t N E (low) E (high) z [a][Ref]
Name sec GeV (2σ) GeV (2σ) (2σ)
080916C 37.9 14 1.32 10.6 4.05 [23]
090510A 0.00155 11 1.58 24.7 0.897 [10]
090902B 23.9 33 1.20 9.02 1.82 [24]
090926A 3.00 7 1.38 2.15 2.106 [25]

TABLE II: Derived and limited parameters of selected high energy Fermi GRBs.

GRB D
−1 ∆c/c D1 k1 M1c

2 D2 k2 M2c
2

Name Gpc Gpc sec/(Gpc GeV) GeV Gpc sec/(Gpc GeV2) GeV
080916C 3.57 1.03E-16 16.8 2.42E-01 4.25E+17 48.8 6.28E-03 4.96E+09
090510A 2.17 6.94E-21 4.18 1.61E-05 6.41E+21 6.09 3.57E-07 6.57E+11
090902B 2.96 7.84E-17 8.38 3.65E-01 2.82E+17 16.0 1.70E-02 3.01E+09
090926A 3.10 9.40E-18 9.59 4.05E-01 2.54E+17 19.5 7.41E-02 1.44E+09

count was compared to that expected from a uniformly
random arrival time distribution. The comparison distri-
bution typically involved 106 trial time-series. To avoid
spurious bunching, only ∆t delays such that the associ-
ated number of real photons was found in less than 1 %
of the equivalent Monte Carlo distributions, were consid-
ered for further analysis.

Returning to the GRB 090510A 11 photon group, do
the 3 brief pulses define the finest time scale of signif-
icance? Could a variable mean rate, perhaps, produce
such a pattern? To that end, we assumed that each of
the 3 photon groups was randomly chosen from a single
parent pulse form. This pulse form is the generic GRB
“Norris pulse” shape first suggested by Norris [20] for the
instance found most common by Nemiroff [21], specifi-
cally, P = Ae−t/α−α/t where P is the photon count rate,
A is the pulse amplitude, t is time during the pulse, and
α is the time scale of the pulse. To be conservative, we
will focus on the broadest photon group, the central pair
separated by 1.069 ms.

A simple simulation shows that randomly chosen pairs
of photons from a Norris pulse form have a mean pair sep-
aration of about 1.20 α. Additionally, in a Norris pulse,
68.2 % of the photons arrive within a total time window
of 1.74 α surrounding the pulse peak, here called the
pulse “width”. Therefore, a parent pulse with width of
∆t = (1.74/1.20)1.069 ms = 1.55 ms would yield a mean
pair separation of 1.069 ms, the longest time between
first and last photons of the three close photon groups
of GRB 090510A. Therefore, in subsequent analysis, we
will use ∆t = 1.55 ms.

The conservative value of ∆t estimated above for GRB
090510A is about a factor of ten smaller than even the
least conservative limit on ∆t listed by Ref. [10] in row
5 of Table S1. A primary reason for this is that Ref. [10]
measured the limiting ∆t essentially as the time differ-
ence between the start of a sub-MeV spike and a possibly

associated 0.75 GeV photon. Our analysis differs from
this earlier analysis of GRB 090510A in that they looked
at photons over a wide range of energies, whereas we
looked at only the most energetic photons (>1 GeV) be-
cause the pulse durations are known to decrease greatly
as photon energy is increased, so the tightest limits on
the dispersion delays will come from the highest energy
photons. Therefore, the small ∆t values presented here
focus on extremely short doublets prominent at very high
energies.

Of the four GRBs considered, only GRB 090510A and
GRB 0900902B have photons arriving close enough in
time to eclipse the 0.01 sec previously reported [10] as the
smallest ∆t record. We therefore conclude that analyzing
the other GRBs at most increased the number of trials
to two, which would decrease the statistical significance
of the ∆t reported here for GRB 090510A to about 3.14
σ, still above 3 σ.

For GRB 08016C, GRB 090902B, and GRB 090926A,
none of the photon groups for which the 2-bin χ2 test
was less than unity showed significant bunching on any
time scale. On longer time scales, clearly distinct photon
groups have their ∆t values recorded in Table 1.

Table 1 lists the measured parameters for the four
GRBs selected. Column 1 lists the title of the GRB,
coded with its date of detection. The ∆t values as well
as the number of photons N on which they are based as
listed in Columns 2 and 3 respectively.

Another measured parameter that limits spectral dis-
persion is ∆E, the energy between the highest and lowest
energy photons arriving from the GRB in the ∆t time
window. Conservative 2 σ values of the lowest and high-
est energy photons – E (low) and E (high) – are given, as-
suming a 10 % single σ energy measurement uncertainty.
They are listed in Columns 4 and 5 of Table 1. Values for
the GRB redshifts were obtained by others from follow-
up observations of the GRB optical afterglows and the
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2σ lower limits are listed in Column 6 of Table 1, with
references.
The ratio of ∆t and ∆E has been used to set limits on

Lorentz invariance previously, where Boggs et al. [22] de-
rived an upper limit of ∆t/∆E of 0.7 sec / GeV for GRB
021206. For GRB 090510A, Ref. [10] list ∆t/∆E < 0.03
sec / GeV at the 99 % confidence level as their conser-
vative limit (no least conservative limit is listed). The
tightest bound from Table 1, however, involving the up-
per limit on ∆t for GRB 090510A, is ∆t/∆E < 6.71
x 10−5 sec / GeV, an improvement of greater than two
orders of magnitude.
From the measured parameters listed in Table 1, de-

rived and limited parameters were computed and listed in
Table 2. Values of D−1, D1, and D2 were computed from
Eq. (2) under the assumption of a flat concordance cos-
mology with ΩM = 0.3, ΩΛ = 0.7 and a Hubble constant
Ho of 72 km sec−1 Mpc−1, and are listed in Columns 2,
4, and 7 of Table 2, respectively.
Given the above data, it is possible to place bounds

for the difference between the speeds of light at differ-
ent energies: ∆c/c. Assuming ∆c results from an in-
herent property of electromagnetic radiation itself, then
the lookback distance each photon has traveled is D−1

as given by Eq. (2) [12]. Defining lookback time as
t = D−1/c, the time differential yields ∆c/c = c∆t/D−1.
Limits on ∆c/c, computed using our strictest upper limit
on ∆t, are listed in Column 3 of Table 2.
A previous limit on ∆c/c using GRBs was obtained in

1999 by Schaefer [14], where an analysis of GRB 930229
yielded ∆c/c < 6.3 x 10−21 for photons of energies be-
tween 30 and 200 KeV. A comparable limit for ∆c/c <
6.94 x 10−21 is derived here from the ∆t listed in Col-
umn 2 of Table 1 for GRB 090510A for photons of energy
difference ∆E & 23.5 GeV.
Alternatively, it can be assumed that it is the inter-

vening space that causes differential speed for photons of
different energies. Following Eq. (2) and approximating
E ∼ ∆E, it is clear that kn < ∆t/(Dn∆En). In other
words, were kn greater than this, the universe would have
separated photons of an energy difference greater than
∆E by more than ∆t. For n = 1 and n = 2, using the
∆t limits listed in Column 2 of Table 1,limiting k1 and
k2 values are listed in Table 2’s Columns 5 and 8 respec-
tively.
The k1 parameter effectively limits dispersion expected

in some versions of quantum gravity [15]. In particular,
given that ∆t ∼ (∆E/M1c

2)(D1/c) as delineated in Ref.
[10], thenM1c

2 = (k1c)
−1. In this parametrization,M1c

2

is a minimum energy scale of the inherent foaminess of
spacetime responsible for the dispersion. Note that the
above data places an upper limit on k1 which translates
into a lower limit on M1c

2. Similarly, it is found that
M2c

2 = (3k2c/2)
−1/2. The limiting values of M1c

2 and
M2c

2 are listed in Table 2’s Columns 6 and 9 respectively.
Prior to Fermi, GRB published lower limits for

M1/MPlanck and M2/MPlanck were on the order of 0.04
and 4 x 10−12 respectively [14, 22], where MPlanckc

2 =
1.22 x 1019 GeV. Using Fermi data for GRB 090510A,
however, Ref. [10] found M1/MPlanck > 102, while this
was relaxed to M1/MPlanck > 1.19 for more conservative
assumptions. Note that using the most stringent upper
limit on ∆t listed found here for conservative assumptions
results in a rather tight bound of M1/MPlanck > 525,
suggesting that space is smooth even at energies near
and slightly above the Planck mass.
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